
Dynamic Affinity Scheduling in

Heterogeneous Multi-Core Processors

David Warnock

A Dissertation Submitted in Part-Fulfilment of the Requirements of
the Degree of MSci Software Engineering at The University of

Glasgow

Department of Computing Science,
University of Glasgow,
Lilybank Gardens,
Glasgow, G12 8QQ. April 2009

Abstract

Heterogeneous processors designs are becoming increasingly
common, and are likely to continue gaining popularity due
to high-profile processors such as the Cell Broadband En-
gine. Traditionally programming for such a heterogeneous
multi-core architecture requires separate design and im-
plementation for each processing core, and programs are
strictly bound to the core for which they were created. It
is often the case that the tools available for each core are
significantly different, and heterogeneous multi-core archi-
tectures have earned a reputation for being very difficult to
develop for.

Recent work by Ross McIlroy has produced Hera JVM, a
Java Virtual Machine which runs on the Cell processor and
abstracts the complex hardware. Hera JVM uses anno-
tations to schedule threads to cores, which prevents full
hardware abstraction. This project aims to replace the
annotation-based scheduler in Hera JVM with a dynamic
affinity scheduler, allowing for a more complete abstraction
of the heterogeneous processor.

A prototype scheduler was constructed, then its perfor-
mance was compared to a static scheduler and the previous
annotation-based scheduler. The dynamic affinity sched-
uler was found to be capable of matching or surpassing the
performance of the alterantive schedulers while offering a
greater degree of hardware abstraction.

i

Acknowledgements

There are a number of people that I would like to acknowl-
edge for their help.

First, thanks to Professor Joe Sventek and Ross McIlroy for
their guidance and assistance during the course of this Re-
search Project. Without their expertise this project would
not have been possible.

A special thanks to my friends and family, who have done
their best to keep me sane for the past 5 years. In particular
I’d like to thank Chris McAdam for his constant support
during this project.

This Thesis is dedicated to the memory of my grandmother,
Margaret Hutchison, who died April 27th 2009.

ii

Contents

1 Introduction 1

2 Literature Survey 5

2.1 Runtime Profiling . 5

2.2 Scheduling . 8

2.3 Conclusion . 12

3 Investigation 13

3.1 Approach . 13

3.2 Foundation . 16

3.2.1 The Cell Broadband Engine 16

3.2.2 Hera JVM . 20

3.3 Cell Investigation . 22

3.3.1 Predicted Affinities 22

3.3.2 Arithmetic Affinities 24

3.3.3 Object Affinities 28

3.3.4 Branch Affinities 31

3.3.5 Affinity Conclusions 34

3.4 Prototype Design . 36

3.4.1 Scoring System 37

3.4.2 Scheduling System 46

3.5 Conclusion . 49

4 Experimental Design 51

iii

4.1 Experimental Aims . 51

4.2 Variables . 53

4.2.1 Indepedent Variable 53

4.2.2 Dependent Variable 54

4.2.3 Extraneous Variables 54

4.3 Experimental Design 56

4.4 Conclusion . 58

5 Results 60

5.1 Static Scheduler Results 60

5.1.1 Static Scheduler Workload Pattern Test Results . 60

5.1.2 Static Scheduler Workload Weight Test Results . 61

5.1.3 Static Scheduler Multi-Threaded Test Results . . 62

5.2 Annotated Scheduler Results 66

5.2.1 Annotation Scheduler Workload Pattern Test Re-
sults . 66

5.2.2 Annotation Scheduler Workload Weight Test Re-
sults . 67

5.2.3 Annotation Scheduler Multi-Threaded Test Results 70

5.3 Dynamic Affinity Scheduler Results 74

5.3.1 Dynamic Affinity Scheduler Workload Pattern Test
Results . 74

5.3.2 Dynamic Affinity Scheduler Workload Weight Test
Results . 75

5.3.3 Dynamic Affinity Scheduler Multi-Threaded Test
Results . 75

5.4 Conclusion . 77

6 Evaluation 79

6.1 Evaluation of H1 . 79

6.2 Evaluation of H2 . 84

6.3 Evaluation of H3 . 85

iv

6.4 Evaluation of H4 . 86

6.5 Conclusion . 89

7 Conclusion 90

7.1 Implications . 92

7.2 Further Work . 93

A Cell Affinity Results 94

B Full Results of Workload Experiment 106

C Full Results of Thread Experiment 112

Bibliography 117

v

Chapter 1

Introduction

As processor designers approach the physical limitations of the mate-
rials available to them, they must look for new and inventive ways to
make faster processors. Processor clock speeds have risen dramatically;
the size of processors has been decreased in order to reduce latencies;
large and efficient multi-layer hardware caches have been added to re-
duce memory bottlenecks. However, with each new processor more
efficient than the last, it became increasingly obvious that monolithic
processor designs would no longer be able to satisfy demands. Paral-
lelism would be required to increase the performance of processors any
further.

Multiple processor computers usually take the form of multiple proces-
sors on the same motherboard or a group of networked computers; as
such these systems are expensive and are typically limited to servers
and labs. As manufacturing processes evolved and processors became
cheaper, major manufacturers such as AMD and Intel started to pro-
duce multi-core processors to meet the performance demands of their
customers. These multi-core processors were homogeneous, containing
two or more cores of the same specification.

Heterogeneous multi-core processors are designed such that the process-
ing cores have different properties. In such heterogeneous processors,
the different cores can have different instruction sets or performance
ratings. Heterogeneous computer systems are not new to computer
science; previous examples include grid computing, which employed
a network of heterogeneous computers to achieve the highest possi-
ble throughput. Some grid systems are still in use today, such as the
‘Folding@home’1 project.

Heterogeneous processors have a number of advantages over their ho-
mogeneous counterparts. The main advantage is that workloads tend to
be heterogeneous themselves; Kumar et.al demonstrated that a hetero-
geneous processor with affinity scheduling techniques would complete

1http://folding.stanford.edu/

1

its workload faster than an equivalent homogeneous processor, even
though the heterogeneous processor has higher scheduling overheads
[14].

Processors designed for specific tasks have a greater advantage, as the
processor can be designed to have an affinity to the expected workload;
this is the case with the Cell BE and the Intel IPX. If a processing
core has been designed to have an affinity with a certain workload,
components designed to improve general-purpose performance can be
removed from certain cores. This will reduced the size and complexity
of these processing cores, reducing costs and allowing more cores to
be placed on a single chip. With more cores, each streamlined for
a specific workload, the overall throughput for the target workloads
would significantly increase when compared to a similar homogeneous
design. For example, the Cell BE is designed specifically to increase
the speed of processing media-based workloads.

However, there are a number of problems faced by the designers of het-
erogeneous processors. The main issues lie in programming; developers
are often required to separately design and implement ‘threads’ that
are explicitly bound to a particular core type. Often the programming
language used for each thread is different due to variations between
the tools available for each core type. Writing applications that can
efficiently take advantage of heterogeneous processors can be difficult
and error-prone.

Another part of the problem lies in scheduling threads. In order to cor-
rectly identify which core is best equipped to handle a given task, the
programmer is required to have a deep understanding of a number of
systems. First they must explore the architectural differences between
the heterogeneous cores in order to understand their performance char-
acteristics. Then they are required to identify the behavioural charac-
teristics of their own code in order to identify which core should execute
the job. Simply identifying program behaviour alone can be a complex
task; it is often the case that behaviour cannot be predicted prior to
runtime.

The techniques and algorithms employed when scheduling large dis-
tributed systems or multi-processor systems are of little use in the
context of a heterogeneous multi-core architecture. As demonstrated
by Kumar et.al, homogeneous scheduling techniques fail to take full ad-
vantage of heterogeneous architectures[14]. Therefore, there is a need
to develop scheduling techniques and algorithms for heterogeneous pro-
cessors that will ease the burden of programming for such architectures.

Assuming that a given piece of high-level code can be compiled to run
on any of the given heterogeneous cores, automating the process of
determining affinities would reduce the mental workload of the pro-
grammer substantially. If thread-to-processor affinities can be identi-
fied accurately and efficiently, threads could be automatically scheduled

2

based on these ‘affinity scores’.

This could be extended to monitor thread behaviour at runtime, allow-
ing the scheduler to handle changing affinities. If the overheads of such
dynamic affinity scheduling are sufficiently small, it is likely that such
a system would be more efficient than any manual alternative; a dy-
namic affinity scheduler would be able to migrate threads as affinities
change, fix incorrectly specified affinities and even determine affinities
where the programmer has not specified them.

This would abstract the heterogeneous architecture behind the high-
level language, allowing the programmer to write multi-threaded code
without requiring an understanding of the architecture it will run on.
This would also allow code intended for a homogeneous architecture to
be compiled for a heterogeneous architecture; dynamic affinity schedul-
ing would ensure that each thread would be scheduled to the processor
best equipped to run it, migrating them where necessary. This can be
split into two distinct problems.

First, a set of program behavioural properties would need to be identi-
fied and their role in determining processor affinities explored. Draw-
ing heavily from the affinity scheduling and runtime profiling research
fields, this part of the problem would involve creating a taxonomy of
code categories and identifying their processing requirements. For a
given processor, the heterogeneous properties of each core would then
need to be explored in order to identify the affinities between process-
ing cores and the code categories in the taxonomy. This information
would be used to design and build a scoring system capable of identi-
fying affinity-altering behaviour and monitoring how affinities change
as the thread runs.

The second part of the problem involves developing a scheduler that
will make use of the information provided by the scoring system in
order to make affinity scheduling decisions. It would also be a dynamic
scheduler capable of reacting to thread behavioural changes, migrating
threads if their affinities shift with their behaviour. This part of the
problem is tied closely to the processor scheduling research field.

The main aim of the research is to develop a scheduler able to com-
pletely abstract the scheduling problem, allowing the programmer to
completely disregard issues related to heterogeneous scheduling. The
dynamic affinity scheduler would be expected to outperform or match
the average performance of a static or manual heterogeneous scheduler.

If these objectives can be successfully achieved, then it would sig-
nificantly reduce the difficulty of programming for such a processor.
With programmers able to take advantage of a heterogeneous architec-
ture without having to understand the underlying details, they would
be able to develop for the platform as they would any other system.
This may lead to increased adoption rates for heterogeneous architec-

3

tures, especially if code written for homogeneous architectures becomes
portable to heterogeneous architectures without performance loss.

This work presented here is based on research carried out in the com-
puter architecture, compiler design, scheduling and runtime profiling
research fields. The results of this research will contribute chiefly to
the scheduling and compiler design research fields, but it is likely to
also have implications in the computer architecture field.

The remainder of this dissertation is as follows; in chapter 2 related
work in these fields will be explored in detail in order to establish a
starting point for the project and identify possible approaches. Chapter
3 will define a specific approach and link it to the available resources. In
this chapter the design of the prototype scheduler will also be presented.
Chapter 4 will discuss the design of any experiments, and their results
will be presented in Chapter 5. Chapter 6 will discuss and interpret
these results and compare them to the original objectives. Finally,
Chapter 7 concludes the dissertation with a discussion of the project
and an analysis of any future work.

4

Chapter 2

Literature Survey

This chapter explores other work related to the research problem. Pre-
sented here are papers by researchers working towards similar aims in
order to establish the current state of the art. Section 2.1 will inves-
tigate models for the identification of program behaviour at runtime,
while section 2.2 will explore research related to scheduling.

2.1 Runtime Profiling

Identifying runtime properties through runtime measurement is an area
of active research, popular mainly because of the wide range of appli-
cations it has. Some techniques such as profiling are aimed towards
offline optimization, while others such as phase and behaviour predic-
tion are often employed in online dynamic optimisation systems such
as Dynamo[1].

In [8], Duesterwald & Bala argue that effective software prediction can
be performed using a very small amount of information. Their work
demonstrates a technique for using small metrics in hot path prediction,
which is calculated at runtime in order to assist runtime based opti-
misations. At the time, their Next Executing Tail system was used in
the Dynamo[1] runtime optimization system; it has since been replaced
with a Most Recently Executed Tail system. The path prediction sys-
tem was only an example, as the point of the paper was to demonstrate
that simple metrics can be more effective than complex ones by deliv-
ering information fast enough that it can be acted upon. The authors
argue that simple metrics use less space and allow faster decision mak-
ing, which reduces missed opportunity costs. If appropriate metrics
are chosen prediction quality is not lowered, offering improved perfor-
mance over complex prediction schemes. This is important research
as it effectively demonstrates that simple metrics can be gathered and
exploited to great effect at runtime. Duesterwald is a prolific researcher
in this field and also works on the Dynamo project which this research

5

contributed to.

Another prolific researcher in the field is Timothy Sherwood. In [18],
Sherwood et.al outlined their basic block distribution analysis method.
Basic block analysis works by building a list of basic blocks at compile
time. This list of basic blocks is transformed into a Basic Block Vector,
or BBV, which contains a list of each basic block and how often it is
run. When a basic block is entered at runtime its corresponding entry
in the BBV is updated. This information identifies the parts of the
code that are executed most frequently, which can be used to identify
basic program phases. Despite requiring some work during the compiler
stage, the authors argue that most optimizing compilers construct a list
of these basic blocks when optimizing. As such, their technique could
be used to identify program phases without incurring heavy costs.

In [17], Dhodapkar & Smith introduce a profiling technique they call
dynamic working set analysis. In this, the working set of an executing
program is monitored. The authors suggest that working set alter-
ations can be used to represent phase changes. The authors note that
working sets would require a quick lossy compression into working set
signatures, as keeping records of them would be too resource intensive.
A set of working set signatures can be used to represent the phases of
a system. This method is unlikely to be effective in a heterogeneous
system, and would require heavy modification.

Dhodapkar & Smith compare 3 phase detection techniques in [7]. The
techniques are dynamic working set analysis, as outlined by themselves
in [17]; basic block distribution analysis, as described by Sherwood at
al. in [18] and conditional branch counts, a third system that uses
cache hits and branch predictor hits to identify program phase changes.
This technique may not be effective in heterogeneous processors, as the
processors may not have the same properties; for example most of the
cores in the Cell processor do not have a hardware cache or a branch
predictor. Therefore, such hardware support cannot be guaranteed in
heterogeneous systems.

The authors identified a number of properties that could be used to
compare these very different profiling methods; comparing them on
properties such as sensitivity, or how effectively phase changes are de-
tected; stability, how effective the algorithm is at identifying stable
phases; performance variance, which is a representation of how effec-
tively the algorithm detects similar phases with varying performance
values; and correlation, which is used to compare the phases detected
by the 3 algorithms. Their experiment demonstrated roughly equal
performance over all of the phase detection systems, with basic block
analysis being slightly more effective at identifying phases than the
other techniques.

In [19], Sherwood at al. discuss techniques that can be used to identify
the behaviour of a program. Using the basic block vectors as described

6

in [18], the authors apply a clustering method which involves plotting
the vectors in a vector space model and identifying concentrations of
vectors by calculating the Manhattan distance between them. In this
case the concentration of vectors is analogous to program phases. This
technique could have a wide range of applications, depending on its
use; unfortunately the algorithm used for clustering in this case has a
background in machine learning and is resource heavy. As such it is
unlikely that this system would be suitable for runtime profiling in a
dynamic affinity scheduler.

Sherwood at al.[20] extends on the technique presented in [19]. They
used the same basic block vector system in order to establish phases via
clustering techniques, but in this paper they also extend this system to
allow phase prediction to take place. Sherwood at al. implemented a
Markhov chain predictor which allowed them to make estimates about
the phase immediately following the current phase, based on the previ-
ous phases and their durations. They called this the run length encoding
Markhov predictor. Upon evaluation, their system was demonstrated
to be accurate when predicting phase changes. Unfortunately, it suf-
fers from the same drawbacks as their clustering research, in that it is
too complex to be suitable for runtime profiling of a dynamic affinity
scheduler.

In [9], Duesterwald at al. discuss methods for identifying and predict-
ing program behaviour at runtime. By taking samples from hardware
counters, the authors were able to observe patterns in behaviour. They
note that behaviour varies enough such that prediction is difficult; how-
ever, most programs displayed periodic behaviour. As such their future
behaviour could be inferred from their histories. They also noted that
different programs had similar periodic behaviour, and as such the be-
haviour of one program could be predicted from the history of another.
They discussed prediction with simple statistical models such as a last
value predictor, where the previous behaviour is taken to represent the
future behaviour; they also explored more complex behavioural sys-
tems, such as table-based history predictors that identify behavioural
patterns which repeat over time.

The implications of this paper are interesting; by demonstrating that
program phases are usually cyclic, Duesterwald at al. have effectively
suggested that very primitive techniques can be used in phase predic-
tion. One of the strengths of the approach used by Duesterwald at al.
in [9] is that it can function on any hardware counters that are available.
While hardware counters cannot be guaranteed to be present between
heterogeneous cores, this demonstrates that phase prediction and iden-
tification can be achieved at a low cost using very small amounts of
data.

7

2.2 Scheduling

One of the first research groups to consider the advantages of hetero-
geneous single-chip multi-processors began by investigating how such a
processor could be used to reduce power consumption. Led by Rakesh
Kumar the team, published the results of their research in 2003 [13].
Their research demonstrated that heterogeneous cores are likely to
have different power requirements, even in a single-chip multiproces-
sor. The authors demonstrated a dynamic scheduler could be used
to reduce overall power use. Their scheduler made decisions based
on power and performance requirements, re-scheduling where possible
to reduce power usage without any major detriment to performance.
When compared with a static scheduler, their power-aware dynamic
scheduler demonstrated large energy savings with a small performance
degradation.

The authors conclude that a heterogeneous chip multiprocessor could
offer such improvements with as little as two heterogeneous cores, not-
ing that more heterogeneous cores would offer greater bonuses. This
paper is important because it compares a dynamic and static sched-
uler, highlighting a situation where a dynamic scheduler is better able
to take advantage of a heterogeneous design. The paper is cited by
a number of important research papers in this field, and the authors
themselves used it as a basis for further research.

In 2004, Kumar at al. published another paper that built heavily upon
their earlier research[14]. The authors compare a static scheduler in a
homogeneous environment to both dynamic and static schedulers in a
heterogeneous environment. When tested with a multi-threaded work-
load, the authors demonstrated considerable performance increases in
the heterogeneous system for both static and dynamic scheduling, with
the dynamic scheduling system offering the greatest performance in-
crease. When comparing the architectures using static schedulers, the
authors found that a statically scheduled homogeneous system would
saturate its job queue long before a similar heterogeneous system.
When compared to a dynamic scheduler, the throughput of the sys-
tem increased again. In order to measure the performance of the sys-
tems, the authors measured the instructions completed per cycle, and
compared the ratio between the systems; this seems a strong way to
compare the performance of the system. The experimental workload
was taken from the SPEC benchmark suite, and the jobs themselves se-
lected and issued randomly; this helped to ensure that the results were
free from bias. The authors acknowledged that they were using work-
load construction techniques similar to a number of other researchers.
Their experiment appears thorough and the results are well presented.

This paper is important to my research problem given that it outlines
a dynamic scheduler aimed at increasing performance in a heteroge-
neous environment. Their dynamic scheduler is very primitive, a fact

8

acknowledged by the authors. Considering future work the authors
suggest that more complex heuristics could be employed to improve
scheduling, such as “cache or branch behaviour, or basic block pro-
files...”. Another suggestion is that a more complex model for phase
prediction could be used to make pre-emptive scheduling decisions.

The work by M. Becchi & P. Crowley [2] describes an experiment com-
paring the differences between static allocation and dynamic allocation
of processes in a heterogeneous environment. Their work bears a num-
ber of similarities to previous work by Kumar at al. and they cite
their work amongst their main sources. There are a number of simi-
larities between their paper and Kumar’s 2004 paper, an issue which
is addressed by the authors in this paper. The model presented in
Becchi & Crowley’s paper considers a number of additional factors,
with the most prominent difference between the two being that Becchi
& Crowley demonstrate a thread-driven dynamic scheduler that re-
schedules when conditions change in the environment. Comparatively,
the technique employed by Kumar at al. in [14] creates new schedules
in bounded time cycles, basing the new schedule on the execution be-
haviour during the previous cycle. Becchi & Crowley claim that this
is no more than standard static scheduling at regular intervals, and
that their system bears a greater similarity to a truly reactive dynamic
system.

Becchi & Crowley demonstrate a more complete model in their paper,
showing how a heterogeneous system could be modelled in a manner
that allows it to react to changes in the system. While they are using
the same metrics to trigger the change, they have improved the quality
of the scheduler presented by Kumar at al. in [14]. At the thread level,
this involves considering how to initially allocate threads to processors
and how to store and work with the heuristics that will decide processor
affinities. An important point is that their dynamic scheduler uses
metrics collected entirely at runtime; this was necessary given the high
level metrics the authors chose to work with, yet they still demonstrated
important techniques for runtime profiling. The paper also discusses
migration patterns and their overheads in considerable detail.

There are a number of published papers that address the issues of dy-
namic scheduling in a heterogeneous system. In a 2007 paper, Sondag
at al. in [21] published the results of research into dynamic affinity
scheduling in a heterogeneous single-chip multiprocessor. Their re-
search bears a number of similarities to the research proposed here.
Thread and core affinities are calculated based on behavioural proper-
ties; their research considers arithmetic, data and control based code
categories. An initial offline analysis of randomly selected basic blocks
identifies code behavioural clusters. The dynamic scheduler will hold
a record of how well each core completed a cluster. If a core performed
well on a cluster, then new code that is assigned to this cluster is also
assigned to the core that particular cluster is attached to, with new
code being evaluated in the same manner as the initial configuration

9

code. As a result of their approach, the authors claim their system will
help to reduce profiling overheads while reducing the stress on the pro-
grammer by hiding the complexity of the system. However, the system
proposed by the author has not been evaluated.

In [4], Blagojevic at al. demonstrates a multi-grain scheduling system
for the Cell processor. Initially, they identified the tasks which repre-
sent a majority of executed code, and outsourced them to the Cell’s
SPEs, which are small streamlined processors designed for media-based
workloads. This resulted in poorer performance compared to no out-
sourcing at all: the authors claimed this was due to the code not being
optimized for the SPE’s architecture. Once the code was optimized,
they implemented Task Level Parallelism, or TLP, which outsourced
tasks to SPEs. The PPE, which is intended to handle general purpose
workloads and oversee the SPEs, was scheduled with more than one
process so that execution on one could continue while the other was of-
floading a task. This also increased the number of tasks to improve the
overall SPE utilization. They discovered that this frequently left some
SPEs idle, so Loop Level Parallelism, or LLP, was also implemented.
This allowed loops to be scheduled to idle SPEs when the SPE utiliza-
tion was low. Testing their system against the standard Linux process
scheduler, they concluded that theirs had greater performance.

The scheduler Blagojevic at al. outlined did not take full advantage of
the heterogeneous nature of the Cell, as no workload to core affinities
were considered when making scheduling decisions. Their system is
also application dependant, requiring heavy modification of the original
code to achieve compatibility with the Cell architecture.

Blagojevic at al. also published [5] in 2007, which built heavily upon
their work in [4]. In this paper they modified their scheduler by adding
a sampling phase, allowing them to determine the optimum number
of SPEs to allocate to each process. The scheduler will re-evaluate
periodically by searching over both task and loop level parallelism to
determine the schedule with the highest utilization. There are a num-
ber of flaws with the method described. For example, the scheduler
assumes that all tasks have the same execution time; another issue is
that searching for optimal schedules uses an exhaustive search. While
the authors acknowledge these issues and offer solutions, these issues
damage the credibility of their work.

In [15], Li at al. demonstrate a scheduling system called AMPS which
allows an operating system to exploit a heterogeneous architecture with
minimal modification. AMPS provides load balancing by ensuring that
the assigned workload matches the processing power of the core, which
is calculated online when the operating system boots. AMPS also uses
this information to provide a fastest-core-first algorithm that migrates
threads to the fastest cores whenever it detects that they are under-
utilised. The third feature of AMPS is a system that aims to determine
the cost of a migration in a Non-Uniform Memory Access based system.

10

The system the authors describe is very simple, and only attempts to
identify if a migration from one core to another will have a high or low
cost. High costs were identified by determining with a few counters
if the migration would cause a high number of cache misses and re-
mote memory accesses; only low-cost migrations would be permitted.
In evaluating their system, they demonstrated improved performance
compared to stock Linux schedulers.

The system described by Li at al. in [15] for determining migration
costs is lightweight and innovative, and a similar system could prove
useful in another heterogeneous architecture. However, it would also
require considerable modification; for example, in the Cell processor all
the cores run at the same speed. The model used by Li at al. would
require expansion in order to accommodate for different heterogeneous
properties.

A project of interest is CellSs, an IBM-funded research project carried
out by Bellens & Perez at al.. In their first paper [3] the authors apply
superscalar techniques to the Cell processor. Their aim in this is to
abstract the complexity of the Cell processor in order to reduce the
mental workload of the programmer. In order to achieve this, CellSs
uses simple tags inserted by the programmer to parallelize sequential
code. These tags serve two roles. At compile time they are used to
create two sets of files; the main program files which execute on the
general purpose PPE core, and task programs that execute on the SPE
cores designed for media processing. At runtime the tags are used to
form a graph of the tasks and their data dependencies. However, all
of this is transparent to the programmer, who simply uses annotations
to indicate basic properties or signal that a task should be run on the
SPE.

The following year, the same research group published another paper
[17] which explored in greater detail the effects and applications of the
CellSs model. They demonstrate that hardware trends are producing
different kinds of multiple core systems, and argue that programmers
require systems that will abstract the multi-core hardware. By allowing
programmers to continue to write sequential code, leaving parallelisa-
tion to the compiler, they claim it will ease the burden of writing for a
complex hardware system. They compare CellSs to other programming
models for the Cell, identifying the differences between them.

It could be argued that the CellSs system is logically flawed. Although
the system abstracts the complexities of the hardware layer, the pro-
grammer is still required to annotate code in order to allow the system
to function. Without any understanding of the underlying hardware,
programmers will be unable to tag their code in a manner that leads to
efficient execution. Another issue is the encouragement of sequential
programming: it is much better to promote a synchronous program-
ming model when considering a multi-core processor. A third impor-
tant issue is that their system does not take advantage of processor

11

affinities.

2.3 Conclusion

In part 2.2, a number of papers are examined that address the prob-
lem of heterogeneous scheduling. In [13, 14, 2, 21] runtime profiling
is applied the basic heterogeneous schedulers in order to make more
effective use of a heterogeneous system. However, these techniques are
very basic and do not extend to architectures like the Cell, where the
different cores have distinct differences. The CellSs [3, 17] project falls
short of the mark in easing the programming burden, and also fails to
take full advantage of the Cell’s design.

Similarly, Section 2.1 revealed that runtime measuring techniques are
well established for runtime optimisation systems such as Dynamo [1].
Behaviour tracking and prediction systems have been thoroughly in-
vestigated; however, it also appears that these techniques have never
been used to determine runtime affinity properties, with one notable
exception [21].

This demonstrates that a dynamic affinity scheduler for a heteroge-
neous system is an open research problem. While there is a lot of
interest in heterogeneous processors, particularly the Cell, current re-
search efforts do not offer any immediate solutions to problems outlined
here.

12

Chapter 3

Investigation

This chapter will define the specific approach taken based on the results
of the survey in chapter 2; this will be outlined in section 3.1. Section
3.2.2 will discuss the resources available and outline how the research
will be undertaken, introducing the idea of a prototype scheduler and
describing its functionality and design at a high level. Section 3.3.5
presents an investigation into the Cell processor, the heterogeneous
processor that will be used during the project. Section 3.4.2 details the
development of a prototype dynamic affinity scheduler, before Section
3.5 concludes this chapter.

3.1 Approach

In order to investigate the properties of dynamic affinity scheduling, a
prototype dynamic affinity scheduler will be constructed for a hetero-
geneous architecture.

The literature survey of chapter 2 raised a number of important points
that will impact upon the chosen approach. One of the first points
raised was that of complexity; in particular, the complexity of the
chosen metrics. While Duesterwald & Bala conclude in [8] that very
basic metrics could be used just as effectively as complex ones, Kumar
et.al in [14] believe that the efficiency of their heterogeneous scheduler
could be improved with more complex metrics.

In any system that makes scheduling decisions at runtime, it is im-
portant to keep overheads and complexity to a minimum. Therefore,
small and simple metrics would be desirable. As such, most researchers
use power usage or processor speed in order to determine a schedule;
however these metrics may be too basic for a number of processors,
ignoring real heterogeneous properties.

Li et.al approached this issue in [15] by attempting to identify be-
havioural affinities between processor cores. Recognising that a het-

13

erogeneous processor may be heterogeneous in a number of ways, their
system performs an investigation when the system boots in order to
determine the type of processors present and their affinities to a par-
ticular workload. Unfortunately, their system will incur considerable
overheads at runtime due to the algorithms and methods used.

Clustering techniques were employed by both Sondag et.al in [21] and
by Li et.al in [15]. Using clustering techniques to identify and group
common behavioural patterns has a number of problems in the context
of a runtime scheduler. It’s mathematically heavy, there may not be
enough clusters to represent the entire range of program behaviours,
behavioural clusters could be wrongly identified and correcting the ini-
tial cluster patterns may be expensive.

Most of the techniques described involved some level of basic block
distribution analysis, first described by Sherwood et.al in [18]. This
technique was demonstrated to be effective at by Dhodapkar & Smith
in [7] at identifying program phases, although Sherwood et.al then
began using basic block analysis as a base for developing clustering
techniques[18].

Duesterwald et.al in [9] suggest that a simpler method may be possible.
Using hardware counters to identify very basic metrics, they were able
to demonstrate that most programs have a heterogeneous workload
which utilizes the hardware in different ways depending on the current
phase. They were also able to demonstrate that program behaviour
is generally cyclic, and by extension they were able to conclude that
previous program behaviour can be used to predict future program
behaviour.

This implies that very basic metrics could be used to identify program
behavioural phases, and that such metrics could also be used to predict
future behaviour at a low cost. In [9] Duesterwald et.al use hardware
counters to identify the specific runtime processing requirements of
certain workloads; similarly, in [15] Li et.al used hardware performance
tests to identify processing affinities.

A number of conclusions can be drawn from the results of previous
research. First, that a set of simple metrics based on hardware require-
ments could be used to identify affinities. Second, that a technique
similar to basic block distribution analysis could be used to determine
the actual behaviour of running code. Thirdly, that the heterogeneous
nature of the system must be well understood if affinities are to be
identified.

Based on these conclusions, a system that determines affinities should
have a prior knowledge of the processor’s heterogeneous nature. It
should also be able to ‘score’ a given basic block by identifying the
core best equipped to run the code it contains. All of this could be
accomplished at compile time by leaving ‘tags’ in the compiled code

14

that represents the affinities of each basic block.

At runtime, the scheduler could read these tags as they are found and
use them to determine an overall score for the thread. An aging func-
tion would ensure that the score represents the thread’s current be-
haviour. This would allow threads to be migrated as their affinities
change over time.

This will be demonstrated through the implementation of a prototype
dynamic affinity scheduler for the heterogeneous Cell processor. First,
the heterogeneous properties of the Cell processor will be explored in
order to identify the relationship between different workloads and the
processing cores of the Cell.

Once these relationships have been identified, a scoring system will
be developed that will tag code at compile time. Finally, a scheduler
will be implemented that will use these tags to score threads, making
scheduling decisions based on which core has the highest affinity for
the threads perceived workload.

15

3.2 Foundation

The prototype scheduler will be developed for the Cell Broadband en-
gine; the architecture of this processor will be explored in part 3.2.1.
The Cell is a high-profile heterogeneous processor that powers the
Playstation 3 games console. Designed primarily for media and games
processing, it’s also being deployed in servers and other systems as de-
velopers realise that it has considerable potential; the Cell processor
contributes a considerable amount of power to the IBM Roadrunner,
currently the fastest supercomputer in the world and the first super-
computer to exceed 1 Petaflop of processing power.1 A network of
Playstation 3 consoles also allowed the folding@home project to break
the world record for distributed network processing power, by using a
network of 670,000 Playstation 3 consoles to increase their throughput
from 250 Teraflops to over 1 Petaflop.2

The work of McIlroy at the University of Glasgow involves modifying
the Jikes Research Virtual Machine (RVM), a variation on the Java Vir-
tual Machine (JVM), allowing it to run directly on the Cell processor.
McIlroy has developed a system that translates Java Bytecode into the
assembly language for each processing core of the Cell, meaning that
normal Java code can be run on the Cell processor. The work presented
here will involve further modification of Jikes RVM by replacing the
annotation based scheduler designed by McIlroy with a dynamic affin-
ity scheduler. Jikes RVM and McIlroy’s modifications will be examined
in part 3.2.2.

3.2.1 The Cell Broadband Engine

In the paper “Introduction to the Cell Multiprocessor”[11], Kahle et.al
discuss the design and development of the Cell. Aiming for high perfor-
mance in multimedia applications and games, the developers designed
a processor with a single Power Processor Element, or PPE, and 8
‘Synergistic Processor Elements ’, or SPEs. The PPE is a more general
purpose processor based on the well established Power Architecture in
order to make the system more accessible. Conversely, the SPEs are
very small lightweight processors designed from the ground up to excel
at a particular workload.

The PPE and the SPEs are arranged on a single die as shown in fig-
ure 3.1. The main components and their relative sizes are shown; the
Synergistic Processing Elements (SPE); the Power Processing Element
(PPE), with the its associated hardware cache; the Element Intercon-
nect Bus (EIB); the input/output controllers and memory interface.
The entire chip runs at the same speed, which is 3.2GHz in the model

1Source: Top 500, June 2008. http://top500.org/lists/2008/06
2Source: BBC News, 2nd Nov 2007. http://news.bbc.co.uk/2/hi/technology/7074547.stm

16

used in the Playstation 3. The diagram in figure 3.2 shows how the
processing cores are arranged and their relationship with the EIB.

Figure 3.1: A close up of the Cell die, with the main components outlined.

Figure 3.2: A diagram of the Cell’s main components.

The PPE is part of the Power architecture family, and as such provides
a familiar environment for Cell developers. It is fully compatible with
the 64-bit Power architecture, which the developers hoped would help
to ease the transition from conventional processor designs. Existing
Power applications are able to run on the Cell without modification,
but doing so would result in low utilization of the Cell’s cores.

It was vital for the the Cell processor to have a familiar starting point
to ease the transition from conventional processor designs. The Power
architecture would be a good choice for this, as it dates back to 1990.
The power architecture is also used by all of the Playstation 3’s com-

17

petitors in the games console market, adding to the the appeal of the
processor and encouraging cross-platform development.

The PPE is designed to be capable of managing the entire processor,
and is equipped with additional instructions that allow it to control the
SPEs; because of this, the SPEs are sometimes referred to as subordi-
nate processors. It is equipped with a Direct Memory Access (DMA)
controller allowing it to offload some of the work involved in fetching
and storing from main memory; however it is also capable of accessing
main memory through normal load and store instructions, along with
the local memory of each SPE without requiring the DMA controller.

The PPE itself has 64KB of L1 cache split evenly between data and
instructions, and 512KB of L2 cache. The Power core is equipped with
a 23 stage pipeline, which uses a branch predictor to help protect the
PPE from pipeline stalls. The core itself uses a dual-issue in-order de-
sign that interleaves instructions from two computational threads; this
results in the processor appearing to have two distinct threads of exe-
cution, a technique intended to further increase the pipeline efficiency.

The Power Core of the PPE contains three execution units; an instruc-
tion unit for fetch, decode, branch, issue and completion; a fixed-point
execution unit, which handles loads, stores and fixed-point arithmetic;
and an AltiVec vector scalar unit, which is fully pipelined for all single-
precision floating point arithmetic.

The SPE is not a familiar architecture for most developers, as it has
been designed from the ground-up for a specific purpose. It is examined
in detail in “The Microarchitecture of the Synergistic Processor for a
Cell Processor”[10], Flachs et.al describe the SPE as a RISC-style pro-
cessor that uses 32-bit fixed length Single-Instruction Multiple-Data,
or SIMD, instructions. Programmers writing for the Cell would be
required to understand both the Power instruction set and the SPE’s
SIMD instruction set. The SPE is designed to be managed externally;
while it is a capable processor, it must be primed by an external pro-
cessor before it is able to begin working. In the Cell, the external
processor is the PPE.

Each SPE contains is comprised of two components; a Synergistic Pro-
cessing Unit (SPU) and a Memory Flow Controller (MFC). The SPU
uses the MFC to communicate with the rest of the system and main
memory via the EIB; in fact, the SPU is completely reliant on the MFC
and has no direct access to any other part of the system. The relation-
ship between these components is shown in figure 3.3; the arrows show
that communication is unidirectional through the MFC.

In “Cell Multiprocessor Communication Network: Built for Speed”,[12]
Kistler et.al describe the nature and capabilities of the MFC. The SPU
communicates with the MFC through a unidirectional channel inter-
face, which other SPE’s and the PPE can write to. The MFC contains

18

Figure 3.3: The components of the SPE.

a DMA controller, which SPU must use to access main memory. DMA
requests queue up in the MFC, and can be issued by any of the other
cores to a depth of 16 commands. The DMA controller can transfer
up to 16KB of data in a single operation, which helps to compensate
for the high costs of relying on DMA for all main memory access. The
MFC also handles all signal notifications and mailboxes, providing a
number of ways to manage communication between the Cell’s cores.

The SPU represents the actual processing core of the SPE. Each SPU
contains 256KB of memory for instructions and data known as the local
store, a processing core, and a channel unit that communicates with
the MFC. The local store is mapped onto the memory map of the pro-
cessor, which allows the SPUs to access each other’s local store through
DMA requests. As the PPE can access memory through standard load
and store operations, it is also capable of directly accessing the local
store of each SPU. The local store contains no hardware cache, and is
designed so that the programmer is responsible for managing this mem-
ory. Small, fast memory of this kind is known as scratch-pad memory.
The local store itself is the largest part of the SPU, and as such was
implemented using a single SRAM cell to minimise area and costs while
maintaining a high level of efficiency.

The processing core of the SPU contains two pipelines, an ‘even’ pipeline
and an ‘odd’ pipeline. The even pipeline handles arithmetic and word
shift operations, while the odd pipeline handles quad-word-shift, branch,
load and store operations. Instructions are dual-issued, allowing two
instructions to be issued each cycle: one to each pipeline. Programs
are executed in-order, with a logic unit that decides which instruc-
tions can be dual-issued. The SPE is fully pipelined for single-precision
floating-point arithmetic, and is able to direct the output of an opera-
tion straight into another functional unit to reduce latencies.

The SPU is not equipped with a branch predictor, always assuming
that each branch is not taken. To compensate for the lack of branch

19

predictor, the programmer is able to insert ‘branch hints’ that sug-
gest which path is most likely to be taken. “The Microarchitecture of
the Synergistic Processor for a Cell Processor”[10], specifies that each
branch miss costs exactly 18 cycles in the SPE.

While each SPE is identical in the Cell, the differences between the
SPEs and the PPE are very pronounced. While all the cores run at the
same clock speed of 3.2GHz, the architectural differences between the
PPE and the SPE mean that each core may be better suited to a partic-
ular workloads, an idea that underpins this project. The SPE and the
PPE differ in their instruction sets and instruction types, pipeline con-
struction, memory access capabilities and capacities, functional units
and in many other ways. Due to these pronounced differences the Cell
processor is considered to be a highly heterogeneous processor that is
very difficult to program for; as such it is an ideal subject for this
research.

3.2.2 Hera JVM

Hera JVM is a Java Virtual Machine, or JVM, written in Java. It
is based on Jikes RVM, which is in turn based on the Jalapeno Dy-
namic Optimizing Compiler [6] which optimizes Java code at runtime.
Jalapeno was built on two compilers; a baseline compiler which ran
prior to runtime, and a dynamic re-compiler which handles any run-
time optimizations.

Jikes RVM grew from the Jalapeno project as an internal IBM project,
but was eventually released as open-source software in 2001 with sup-
port for the Power architecture. The Jikes RVM system has a number
of notable features. ‘VM Magic’ allows the compiler to intervene during
compilation and inject code at certain points. This allows the compiler
to provide low-level mechanisms, such as providing direct access to
memory. Jikes RVM also has a Memory Management Toolkit which
heavily exploits ‘VM Magic’. Jikes RVM also uses open-source alter-
natives to the standard Java class libraries, such as GNU Classpath.

Hera JVM is a research project built on Juikes RVM under construction
at the University of Glasgow [16]. Hera JVM aims to demonstrate tech-
niques for abstracting complex heterogeneous processors, in particular
the Cell. Hera JVM uses the existing Jikes Power architecture compiler
for the PPE, and contains a new compiler for the SPE. Threads are
mapped to cores, and Java threads are able to migrate between the two
cores types through just-in-time compilation.

In order to abstract the heterogeneous nature of the Cell further, Hera
JVM also adds a considerable amount of functionality to the virtual
machine. With Hera JVM, the SPEs are able to run multiple software
threads, and a software cache in the local store of each SPE eliminates
the need for the programmer to manage SPE memory themselves. This

20

allows Java code to run on either the SPE or the PPE without requir-
ing heavy modification. Hera JVM abstracts most of the complexity
including memory management, instruction set differences and thread
migration.

Hera JVM contains a static scheduler that uses annotations to make
scheduling decisions; annotations either directly specify the processor
that code should run upon, or describe the expected program be-
haviour. In the latter case, scheduling decisions are made based on
which processing core is best equipped to handle the workload de-
scribed.

This means that the heterogeneous processor is abstracted between
a combination of the annotations and automatic systems such as the
software cache. The annotations themselves could be simplified, made
optional or removed completely if the static scheduler was replaced
with a dynamic affinity scheduler.

If the dynamic affinity scheduler was suitably efficient, it would be
superior to an annotation-based scheduler in a number of ways. The
most immediate benefit is that programmers are no longer required
to add annotations to their code, allowing any Java program to run
on the cores it has an affinity for. Affinity scheduling would correct
mistakes made by the programmer when adding annotations, such as
adding the wrong annotation or forgetting an annotation. A dynamic
affinity scheduler would also allow threads to migrate as their affinities
change; Hera JVM allows threads to migrate if they have the correct
annotations.

The Cell processor is a high-profile heterogeneous architecture with a
number of real-world applications, and Hera JVM provides an effective
demonstration of how such an architecture could be abstracted. Imple-
menting a dynamic affinity scheduler in the Hera JVM would complete
the abstraction of the heterogeneous architecture, and demonstrate the
effectiveness of affinity scheduling techniques.

21

3.3 Cell Investigation

In order to develop a suitable scheduler, it is important to first identify
which heterogeneous properties of the Cell processor would offer the
greatest benefits when exploited by a dynamic affinity scheduler. There
are a wide range of potential affinities in the Cell processor, each likely
to offer different levels of performance gain. An experiment will be run
in order to determine exactly which affinities should be focused upon.

3.3.1 Predicted Affinities

Hera JVM has already tackled a number of heterogeneous issues, such
as adding a software cache for the SPE’s local memory. In order to ab-
stract heterogeneous behaviour, McIlroy intended to add an annotation
based static scheduler to Hera JVM. In his second year PhD report,
McIlroy specifies a number of annotations along with the behaviour
they are intended to represent. These annotations would be an ideal
starting point for predicting the affinity properties should be used to
make scheduling decisions.

The proposed annotations are capable of identifying arithmetic, mem-
ory access, blocking, data ownership, and thread communication prop-
erties. For example, some of these annotations allow the programmer
to identify floating point or integer based code, while another group
allows the author to identify producer/consumer relationships between
threads. As the dynamic scheduler aims to use only simple metrics,
only the metrics which will offer the highest returns should be consid-
ered.

Arithmetic annotations consider floating point and integer calcula-
tions. The SPEs of the Cell are designed to be substantially faster
than the PPE at arithmetic, in particular single-precision floating-
point workloads. In “The potential of the cell processor for scientific
computing”[22], Williams et.al discuss the floating point abilities of the
Cell and demonstrate that the SPEs of the Cell are extremely efficient
at floating point arithmetic when compared to other processors such as
the Intel Itanium. As discussed in section 3.2.1, the SPE’s of the Cell
were designed specifically for this purpose. This suggests that arith-
metic affinities should be the first area of investigation for determining
affinities.

Execution behaviour annotations concern memory access, the use of
heap and stack memory, input/output access and blocking behaviour.
The SPEs within the Cell are limited to accessing only their own local
memory directly; for everything else they are forced to use DMA ac-
cesses. Through DMA, they are capable of reading and writing large
pieces of data in a single DMA request. However, for smaller pieces
of data the overheads of making a DMA request quickly become very

22

high. The MFC unit of each SPE is only capable of holding 16 out-
standing DMA requests, and coupled with the relatively large amount
of memory available per SPE, it is clear that the SPE is not intended
for applications that make frequent memory accesses. The PPE has no
issue with memory access, having both a DMA controller and direct
access to all the memory in the system. Thread memory access pat-
terns are a difficult thing to measure, especially if heap or stack usage
are considered. However, it may be possible to use a low-level metric
to represent memory access frequency, which may reflect these affinity
properties to some degree.

Data ownership annotations allow the static scheduler to assign threads
based on information sharing. Annotations are suggested to signify
when data is shared or local, and whether shared data can be accessed
simultaneously by different sources. Theoretically, threads which share
data will have lower overheads if they are assigned to the same core.
Unfortunately, Hera JVM clears the software cache on a context switch,
causing a number of problems. If two threads sharing data were both
on the SPE, then the local cache would be cleared at every context
switch. If on different SPEs, then DMA would be required for each
access. If on the PPE, the problems would be reduced. If a mixture
of PPE and SPE, it would be a one-way arrangement with only the
PPE able to quickly access the data. Therefore, any threads which
have a data-sharing arrangement would need to run on the PPE. This
would be a complex system to model, and as such representing it in a
low-level metric would be difficult.

Thread communication annotations are also specified, able to signify
that threads belong to a particular group and the communications be-
tween these groups. Annotations are also outlined that can signify
producer consumer relationships, or threads which are a part of more
than one group. As with data ownership, this information can have an
impact on scheduling when exploited. If threads are assigned to cores
so that one thread runs while another is blocked, then it reduces re-
source contention. Unfortunately, this suffers from the same problems
of data ownership; cache-clearing on the SPE’s and the complexity of
modelling this behaviour make it unsuitable for low-level metrics.

The annotations outlined by McIlroy suggest that arithmetic and mem-
ory access operations are likely to demonstrate the most clear affinities.
However, it is also worth considering the architecture of the Cell proces-
sor as discussed in section 3.2.1 for other potential affinity properties.
One of most notable differences between the PPE and the SPE is the
structure of their pipelines. In particular their sizes; the PPE has a
long pipeline that, when stalled, would result in significant overheads.
To combat this, the PPE is equipped with a branch predictor. The
SPE has a very short and simple pipeline that dual-issues instructions.
While pipeline stalls cost less on the SPE, they will happen much more
often because it is not equipped with a branch predictor. This implies
that branch-heavy code would show an affinity for the PPE, where it

23

could be fully pipelined.

There are three heterogeneous properties that should be investigated.
The first is the difference in handling arithmetic; the SPE is designed to
be considerably faster than the PPE at this task. The second property
is memory usage, which is likely to demonstrate an affinity for the PPE.
The third property considers branches in the code, which are also likely
to demonstrate an affinity for the PPE.

Memory access could be represented in Java through the usage of Ob-
jects. This would include instantiating objects, calling methods and
accessing fields. Each of these implies a memory operation, and as
such monitoring the usage of object could be used to represent the
overall memory usage of a particular thread. This would effectively en-
compass any cache affinities and the SPE memory access limitations.
Therefore, code that handles a large number of object code would be
likely to demonstrate an affinity for the PPE due to the combined
effects of a hardware cache and direct access to memory.

Most Java code can be represented as either arithmetic, branches, or
object code. A given program could be analysed to work out how often
each operation appears; these ‘code densities’ could then be used to
calculate an affinity for each program to a particular processor. Hera
JVM takes Java Bytecode as an input, so these three properties could
be mapped directly to low-level instructions.

This would mean that thread to core affinities could be calculated by
monitoring the bytecodes of a program; if there are more bytecodes
that show an affinity for the SPE, then the thread should be scheduled
to the SPE. Such thread monitoring could happen online or offline;
some runtime monitoring would obviously be required, but a system
such as basic block distribution analysis, as outlined by Sherwood et.al
in “Basic Block Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications”[18] could be used to move the ma-
jority of the work to the compilation stage.

Scheduling decisions based on these three properties would depend en-
tirely on the performance gap between the two processors. In order to
determine the exact performance ratios between these instructions, an
experiment was run to determine performance differences between the
SPE and the PPE when faced with arithmetic, object and branch-based
workloads.

3.3.2 Arithmetic Affinities

An experiment was written to determine the affinities over different
categories of Java bytecode. The first of these categories concerns arith-
metic bytecodes, of which there are three sub-categories; integer, long,
single-precision floating-point, and double-precision floating-point. For

24

the remainder of this report, single-precision floating-point will be re-
ferred to as simply ‘float’ and double-precision floating-point will be
referred to as simply ‘double’.

The aim of the arithmetic test was to write a piece of code and run it
on both the PPE and the SPE, recording the time it takes to complete
on each core. The magnitude difference between the resulting times is
a good representative of code to core affinities.

All the tests were written in Java, with each line of the test designed
to invoke a particular java bytecode. For the arithmetic tests, all the
primitive types have similar bytecode commands; therefore there was
little difficulty in creating similar tests. At the Java level, the code
appears to be 100% arithmetic code. At the bytecode level, there are
additional load and store operations; for the arithmetic tests, these ad-
ditional operations reduced the arithmetic operation density to around
25%. Table 3.1 demonstrates how a simple operation, a number mul-
tiplied by itself, is compiled into bytecode.

Java Bytecode
varA *= varB ILOAD x:varA

ILOAD x:varB
IMUL
ISTORE x:varA

Table 3.1: Java Code Compared to Equivalent Java Bytecode.

The aim of each test was to investigate the relationship between the
percentage of arithmetic code and the processing core the code was
executed on. Four individual tests were run, one for each basic type;
integer, long, float and double.

For each basic type, 101 loops over the test were made, with each con-
secutive test increasing the arithmetic workload by 1%; the remainder
of the test code was built from simple get and put field operations.
The first iteration comprised 0% of arithmetic, while the final iteration
comprised 100% arithmetic code. The entire test was run 5 times for
each basic type in order to provide a high level of accuracy.

Each test ran the same code on the PPE and the SPE and recorded
the times. When the test code consists of 100% arithmetic code, the
speed difference between the processing cores becomes apparent. Table
3.2 shows the results of the final iteration, when the test code contains
100% arithmetic; that is, Table 3.2 demonstrates the actual affinities
for arithmetic code.

These results demonstrate that the SPE will always be superior to the
PPE with any kind of arithmetic, although with varying degrees of
success. It is not surprising that the SPE is significantly faster with
floating-point arithmetic, as it was designed specifically for a floating-

25

point workload. However, when it is considered that both cores run at
the same clock speed, a 468% increase in speed is impressive. Double-
precision arithmetic demonstrates the lowest increase, yet still runs
269% faster on the SPE than it does on the PPE. Therefore, all arith-
metic operations demonstrate a significant affinity towards the SPE
cores.

Instruction Type PPE Time (ms) SPE Time (ms) SPE Difference
Integer: 279.2 79.6 351%

Long: 590.2 156.8 375%
Float: 492 105.2 468%

Double: 466.2 173.2 269%

Table 3.2: A Comparison of the Arithmetic Abilities of each Core Type.

Figure 3.4 shows the relationship between the two cores as the per-
centage of arithmetic code is increased. The long and double-precision
arithmetic relationships increase in a linear fashion, which is to be ex-
pected given a linear increase in the percentage of arithmetic code.
However, basic integer and floating point operations demonstrate a
slight curve, showing that a mixture of the two operations produces a
smaller increase in the SPE.

There are numerous possible reasons for this slight curve; it could be
related to DMA requests in the SPE, or the difference in pipeline struc-
tures. However, it lies outside the scope of this experiment to address
this question; the aim is to identify affinities, and the results of this test
clearly demonstrates that the SPE has a strong affinity for arithmetic
workloads.

As these results demonstrate a similar trend, they can be aggregated
into a single result. Figure 3.5 shows the average relationship between
arithmetic code and the core that it runs on, demonstrating the su-
periority of the SPE for arithmetic-heavy workloads. The individual
results of these tests, along with graphs showing the timings of the
results, can be found in Appendix A.

26

Figure 3.4: Individual Arithmetic Performance Differences between the
Cores of the Cell Processor

Figure 3.5: Average Arithmetic Performance Differences between the Cores
of the Cell Processor

27

3.3.3 Object Affinities

In Java, object code is can be split into three distinct categories; in-
stantiation, method calls and field references. In Java objects and
instantiated through the new command, which invokes the constructor
method and allocates memory for the new object; this can be quite
an expensive operation, and as such may highlight significant affinity
differences.

Field references simply mean referring to a non-local variable, which
usually require a DMA request on the SPE. Method references are
basic function calls and will also require a DMA request on the SPE.
Test code was written such that each test contained roughly the same
amount of special bytecodes, and covered the whole range of bytecodes
for each category. This meant that some of the test methods had to
repeat the same operations to ensure that all the tests were of similar
size, ensuring that the results could be accurately compared.

When first running this test, the ‘new’ part of the object test took an
extremely long time to run and produced highly inconsistent results.
This was due to the Java Garbage Collector, which automatically clears
memory when an object is no longer in use. The Java Garbage Collector
automatically suspends the running thread in order to clear unused
items from the memory. The high cost of repeatedly creating new
objects coupled with the efforts of the garbage collector to clean up
the unused objects created long testing times and unreliable results.

This problem was solved by reducing the depth of the test; while each
phase during execution consists of 5000 iterations, the phase length for
any ‘new’ operations was reduced by a factor of 10 to 500. This allowed
for the reading of more accurate results, although the test still took a
significant amount of time to complete. As with the arithmetic test,
the object test was run 5 times to ensure accuracy.

As with the arithmetic test, this test consists of increasing the per-
centage of ‘special bytecodes’ in the test from between 0% and 100%.
Similarly, the values at 100% object code are used to describe the ac-
tual affinities between the code and the processing cores. Table 3.3
lists the results of this test, and demonstrate that object code will run
considerably faster on the PPE.

The methods used for this test were small, but as the SPE is capable of
making very wide DMA transfers this is acceptable; also, the methods
could not have been made any larger without adding other bytecodes
and operations to the test. It is surprising that the result for method
invocations is so high, as each invocation is likely to require a DMA
access.

It is not altogether surprising that the PPE is significantly faster than
the SPE at making field accesses; with direct access to all the memory

28

in the system, it is a simple matter for the PPE to access any field
regardless of where it is kept.

That ‘new’ operations demonstrate a significant affinity for the PPE is
also an expected result. This is likely due to the hardware support and
caching abilities of the PPE, while the SPE is slowed by DMA requests
and a software cache.

Instruction Type PPE Time (ms) SPE Time (ms) SPE Difference
Method 394.4 467 84%

Field 137.2 212.2 65%
New 2687 4784 56%

Table 3.3: A Comparison of the Ability of each Core to handle Object Code.

Figure 3.6 demonstrates the performance differences and how they
change as the percentage of object bytecodes is increased. As before,
the remainder of the test code is made up of simple get and set and
set operations. However, this means that the field test would be made
entirely of the same test code for every iteration; that is, every iteration
will contain 100% field code. As this has been used as a basis of com-
parison for all the other tests, changing the test to prevent this would
make comparison difficult. As a direct result, the field test appears as
a straight line on the graphs.

The ‘new’ test also has an unusual curve; it has a somewhat inconstant
downwards curve until the test code contains roughly 40% ‘new’ oper-
ations. At this point, the graph levels out and becomes a straight line,
demonstrating that a peak has been reached; at over 40% ‘new’ oper-
ations the SPE will be around 44% slower than the PPE. Identifying
why this peak exists lies outside the scope of this investigation.

The combined scores of these three tests are shown in Figure 3.7. These
results are adequate to show that the PPE has an affinity for object
code. In the best case, object code will still run 16% slower on the
SPE; therefore, where possible object code should be run on the PPE.
The full results of each individual test can be found in Appendix A.

29

Figure 3.6: Individual Object Performance Differences between the Cores of
the Cell Processor

Figure 3.7: Average Object Performance Differences between the Cores of
the Cell Processor

30

3.3.4 Branch Affinities

As the SPE is not equipped with a branch predictor, branch misses
would create pipeline stalls. However, the SPE has a significantly dif-
ferent pipeline structure from that of the PPE, which is equipped with
a branch predictor. The SPE instruction set provides a ‘branch hint’
ability, which allows the programmer to suggest the likelihood of a
given branch being taken. The presence of this system suggests that
branch misses would have a significant impact on the performance of
code running on the SPE.

To determine the affinity of branch-heavy code, four branch tests were
written to demonstrate different types of branching behaviour. The
first of these tests was designed to be perfective, in that the SPE
pipeline would stall as little as possible. The SPE always assumes
that a branch is not taken, so test code was organised such that this
would be the case; the SPE pipeline would theoretically run at optimal
efficiency.

The second of these tests was designed to be as destructive as possible
to the SPE, by ensuring that branches disrupted the pipeline. It would
be expected that this would demonstrate a considerable overhead for
the SPE, and as a result of this branch-heavy code would demonstrate
an affinity for the PPE.

The third test was an alternating test, which alternated between branch
hit and branch misses in order to test the effectiveness of the PPE
branch predictor. While the SPE would be expected to demonstrate
uniform behaviour without a branch predictor, the PPE’s branch pre-
dictor would be expected to produce similar results regardless of the
path taken. However, if the branch predictor fails on the PPE it will
be much more expensive to recover than if it happened on the SPE.

The fourth and final test aims to investigate the ability of both cores
to process Java ‘case’ statements, which are also known as ‘switch’
statements. This consisted of a number of nested case statements to
determine the ability of both processing cores to handle such code.

Table 3.4 shows the results of this experiment. Using the same format
as before, the results demonstrate that at 100% branch code, there is
very little difference between the two cores. This could be because the
branch predictor on the PPE is primitive, or because the SPE’s short
pipeline allows it to recover quickly from errors. Section 3.2.1 noted
that branch misses cost exactly 18 cycles to rectify on the SPE; it would
seem that this is not a major issue, and that regardless of behaviour
branch-heavy code does not show a particular affinity for either core.

As with the previous experiments, Figure 3.8 demonstrates how the
performance changes as the percentage of branch code increases, while
Figure 3.9 shows the average affinity of branch code. Based on the re-

31

Figure 3.8: Individual Branch Performance Differences between the Cores
of the Cell Processor

Figure 3.9: Average Branch Performance Differences between the Cores of
the Cell Processor

32

Instruction Type PPE Time (ms) SPE Time (ms) SPE Difference
Perfective: 161 146 110%

Destructive: 118.8 129.6 92%
Alternating: 117.25 129.5 91%

Case/Switch: 195.8 177.4 110%

Table 3.4: The Impact of Branching on the Two Cores.

sults of my test, it seems that branches cost little and have little affinity
for either the PPE or the SPE. As with the previous experiments, more
detailed results can be found in Appendix A.

33

3.3.5 Affinity Conclusions

These tests have made the affinity properties of each code group clear.
Shown together in Figure 3.10, the relationship between the code type
and processing core is quite clear. The 100% line demonstrates that
the code has no particular affinity for either core. Results above this
line demonstrate an affinity for the SPE, while results below show an
affinity for the PPE.

Figure 3.10: Comparison of Average Instruction Performances

At 100%, the actual affinities of each type of code can be compared.
Table 3.5 demonstrates the final results of this test; the magnitude per-
formance difference of the same code when run on either core. The most
striking of these results is for arithmetic code, which will demonstrate
an average speed increase of 366% when run on the SPE. Conversely,
object code will run 150% faster on the PPE. Branches in code seems
make little difference and can be scheduled to either processor.

Code Category SPE PPE
Arithmetic: 3.66 0.28

Object: 0.68 1.5
Branch: 1.01 0.99

Table 3.5: Code to Core Affinities for each Bytecode Category.

Figure 3.11 shows the speed difference for each type of code when
scheduled on the SPE. This information would allow a scheduler that
monitors java bytecode to make scheduling decisions based on the frac-
tion of either arithmetic or object code. While a scheduler could run
it’s own tests to determine code to core affinities, as Li et.al demon-
strated with their AMPS system[15]; however, running such tests is

34

Figure 3.11: Instruction Type to Core Affinities

costly and the same effect could be achieved through offline analysis of
the architecture.

This information will provide the basis for a prototype dynamic affinity
scheduler; this experiment has demonstrated not only that the Cell’s
cores have heterogeneous processing abilities, but also that the perfor-
mance difference between cores is significant.

35

3.4 Prototype Design

This section will detail the design and development of a prototype
dynamic affinity scheduler. In section 3.1, it was concluded that the
prototype scheduler will analyse the input code and create tags that
signify the processing core affinities of that code. Section 3.2.2 con-
cluded that this scheduler will be built into the Hera JVM[16] and will
run on the Cell Processor. Section 3.3.5 detailed an investigation into
the Cell processor and its heterogeneous properties, and demonstrated
that bytecode monitoring could be used to identify code-to-core affini-
ties.

Therefore, the prototype system will monitor the bytecodes of a pro-
gram. When it is compiled into PPE or SPE assembly, the code can
be ‘scored’, attaching a value to the code that can be used to deter-
mine which core this code should be scheduled on. When a thread
runs a piece of code, the scores for that code are added to the thread.
This information can be used to predict the future behaviour of the
thread, as demonstrated by Duesterwald et.al in “Phase Tracking and
Prediction”[9]. As a thread’s affinities change over time, it will migrate
between processors.

Figure 3.12: The Generation of Thread Affinities

This system would be comprised of two parts; the compile-time scoring
system, which will score a given piece of code, and a runtime scheduler
which will use these scores to make scheduling decisions. Figure 3.12
demonstrates how each thread will eventually build up a ‘score’ that

36

represents where each thread should be scheduled.

Each component of this system will be explored seperately. The compile-
time scoring system will be discussed first, in section 3.4.1. The actual
dynamic affinity scheduler itself will be discussed in section 3.4.2.

3.4.1 Scoring System

The scoring system will run at compile time and generate ‘scores’ for
each piece of code that it is given. These scores will then be used at
runtime to determine the thread-to-core affinities. Hera JVM is a Just-
In-Time (JIT) compiler, meaning that code is compiled just before it
is run. It takes Java class files as an input, which contains a Java
program in Java Bytecode. Java bytecode, or simply bytecode, is an
intermediate language that Java programs are compiled into to run on
a JVM.

In Java, all code is contained in a method. As Hera JVM is a JIT
compiler, it compiles each method from bytecode just before it is run.
In Hera JVM, each method needs to be compiled twice; once for the
PPE, and once for the SPE. The method scoring system runs during
the compilation stage, and attaches scores to each compiled method.

Program behaviour is dynamic, so attaching scores to methods is not
entirely straightforward; even something as simple as a loop would
make a significant difference to the behaviour and affinities of a method.
Scores could be attached to basic blocks, in a system similar to the one
suggested by Sherwood et.al in “Basic Block Distribution Analysis to
Find Periodic Behavior and Simulation Points in Applications”[18].

However, such a system would likely impose significant overheads. It
was decided that the most important type of dynamic behaviour to con-
sider would be signalled by a backwards branch; a backwards branch
would suggests a loop, which is the programming construct most likely
to have a significant impact on the runtime behaviour. This would
ignore conditional statements, reducing the accuracy of the resulting
behavioural description. It was decided that modelling simply the en-
tire method along with backward branches would provide an adequate
description of that method’s actual runtime behaviour.

Section 3.3.5 concludes that arithmetic code will always run signif-
icantly faster on the SPE; therefore the scoring system will aim to
calculate exactly how many arithmetic operations are in a given piece
of code. It will do this by counting the number of arithmetic bytecodes
along with the number of actual bytecodes, which can be used to work
out the percentage of arithmetic in the given method.

To account for backwards branches, the code between each backwards
branch would also be counted. The score of a backwards branch would

37

be subtracted from it’s parent, and the score for a given branch would
be added every time that backwards branch is taken. Figure 3.13
demonstrates how each method would then be scored.

Figure 3.13: Map of a Method Score

The method scoring system itself is reasonably complex; it is required
to analyse all of the bytecodes and recognise particular situations, such
as backwards branches, and generate scores accordingly. However, a
number of interesting issues arose when developing the method scoring
system.

The first issue was immediately obvious when the scheduler was first
run; it produced unrealistically high results. After using a bytecode
viewer to verify that the test code was not signifcantly larger than it
was believed to be, it became apparent that the additional bytecodes
were in fact coming from the JVM itself. Hera JVM and the Sun Java
JVM, along with most of the given APIs, are written in Java. As a
result of this, a simple piece of test code that produces “Hello World”
as an output produces an extremely high score. This is because prior
to running the actual method, the JVM must start up and compile the
code. When the eventual score is released, it includes the results of all
of these operations.

Figure 3.14: The JVM Scoring Problem

This problem was addressed by modifying the scoring system in a num-

38

ber of ways; first, it was modified to ignore any code which belongs to
the JVM. However, it could not be programmed to ignore the stan-
dard Java libraries; this would go against the aims of the research.
Unfortunately, some parts of the JVM will invoke methods from the
standard Java libraries; this cannot be prevented. To address this is-
sue, the score was cleared at certain points to reduce the effects. It was
eventually possible to verify that a given piece of test code was com-
pletely free from mitigating scores from the JVM by counting bytecodes
and verifying output manually; while it would be unwise to claim that
this demonstrates the scoring system is completely accurate, it can be
claimed that any remaining external influences would be quite unlikely.
Figure 3.14 demonstrates this issue.

Another interesting issue was that of method invocations. When a
method is invoked, it runs ‘seperately’ from the method which invoked
it. Figure3.15 highlights this problem; should the scores for a method
be counted towards the score if its invoker? It was decided that meth-
ods should be self-contained, and such their scores should only affect
the thread scores, and not the scores of the methods that call them.
This was extended so that the method invocations are not counted at
all when counting the total number of bytecodes.

Figure 3.15: The Method Invocation Problem

One test gave very surprising results when it was initially run. The test
in question contained advanced mathematical formulae concerning the
mass and luminosity of black holes. However, when this test was run
it produced a very low score. This low score is attributed to the Java
math package, which is written in C; as this package is written in C,
the scoring system is unable to score its methods. To counter this, the
method scoring system automatically adds a set score to any method
which invokes the math package. The added scores are high enough to

39

ensure that a small number of math package invocations would quickly
produce a very high arithmetic score for the method.

This information, once it has been generated, must be accessible by
the thread. This is done by adding assembly code to the generated
output that contains the method’s scores. When the code is run, the
values are read out of the assembly code and used to determine the
thread affinities. As the SPE and PPE have different instruction sets,
two different implementations are required.

Both implementations would require a similar set of modifications.
First, the stack would need to be modified for each method invocation
to create a space that could hold the scores. Three parts of each com-
piler would need to be changed; the prologue, which sets up the stack;
the epilogue, which finishes a method invocation and returns the re-
sults; and the backwards branch generator, where backwards branches
are generated.

Altering the PPE stack was not a complex task; it was achieved by
adding two extra slots to the stack header, as shown in Figure 3.16.
These two extra slots created enough space to store the total byte-
codes for a method, and the total number of arithmetic bytecodes for a
method. During runtime, this information can be written to and read
from the stack by assembly code.

Figure 3.16: Modifications to the PPE Stack

The prologue is the first part of the compiler to be called, and it gener-
ates the code that sets up the stack header. This was expanded so that
when the prologue is called, it additionally sets up the extra two slots
as shown in Figure 3.16. The prologue then requests the method scores
from the compiled method object; these starting scores are then writ-
ten directly into the stack header. If the code contains no backwards
branches, then these are the scores that will eventually be passed back
to the thread itself.

When the compiler generates the assembly code for a backwards branch,
it also requests the scores for this particular branch from the compiled
method. Each branch is identified by the bytecode index, that is the
position of the branch in the source bytecode. Adding this informa-

40

tion to the stack header means the current values must be taken from
the stack and the new values added to it. Then, the new scores are
returned to the stack header. This process is shown in Figure 3.17.

Figure 3.17: Adding a Branch Score to the Current Method Score

At the epilogue for the PPE, the information is taken from the stack
and written to the PPE processor object. To do this, two entrypoints
were created; entrypoints are accessible from both the assembly code
and the high level system. Two additional entrypoints were created
on the processor object, which could be addressed during the epilogue
section of code generation. This meant that when the epilogue is run,
the values are taken from the stack header and written to a field in the
processor object; this will allow the scheduler, and subsequently the
threads, to access them. This process is demonstrated in Figure 3.18.

The process is slightly different when the SPE is concerned, as it has
a different stack structure and a different instruction set. As shown in
Figure 3.19, the stack appears very similar, and creating space for the
new values did not pose a major challenge. As before, two extra spaces
were created on the stack; one for the total bytecode count, and one to
hold the number of arithmetic operations that were encountered.

The process for altering the prologue on the SPE was only slightly
different from the method used in the PPE, and these changes are
related to the instruction set. Similarly, loops were handled as shown
in Figure 3.17; the differences between the SPE and the PPE were
again related to the difference in instruction sets.

The epilogue for the SPE was significantly different however, as en-
trypoints are not compatible with the SPE. While this technique was
effective for the PPE, the SPE would require a different approach. It
is for such problems that the SPE was equipped with such a large

41

Figure 3.18: The PPE Epilogue

Figure 3.19: Modifications to the SPE Stack

42

amount of scratch-pad memory; this memory can be used for whatever
the programmer desires.

At first, enough space was reserved in the memory to provide space for
two integer values. However, when this was tested the numbers that
were read from the memory had been corrupted. This was because
the SPE can only read and write from the local memory in 128-bit
wide segments or greater. Initially, 64 bits had been reserved, which
is enough space for two integers. This problem was solved by rotating
the fetched quadword. In order to access values smaller than 128 bits,
the SPEs use an ‘offset’ system; however, Hera JVM distributes the
scratch-pad memory when the SPE is initialized. There were consid-
erable amounts of space reserved for later expansion, so 128 bits were
reserved for each integer. This kept the system simple, and reserved
space for more data should the system be expanded at a later point.

Figure 3.20 demonstrates how the memory access patterns of the SPE
led to the scores becoming corrupt, while Figure 3.21 shows how the
epilogue takes the scores from the stack header and writes them to
these reserved slots in the scratch-pad memory.

Figure 3.20: Reading and Writing from the SPE Scratch-Pad Memory

The entire process of thread scoring is reasonably straightforward. Fig-
ure 3.22 offers an overview of the process. At compile time, regardless
of the target architecture, the method is scored and these scores are
added to the method object. When the time comes to generate the
assembly code for this method’s bytecodes, additional instructions are
generated at certain points that add the scores to the output.

43

Figure 3.21: The SPE Epilogue

Figure 3.22: Thread Scoring Overview

44

At runtime, the inserted code manipulates the stack header, producing
two values that represent the amount of arithmetic operations in the
source code. The scheduler will then read these values and use them
to make scheduling decisions.

45

3.4.2 Scheduling System

The scheduler will make scheduling decisions based on the scores it
receives. If the given scores show a high amount of arithmetic code,
these operations will be scheduled to the SPE where they will complete
faster. This should increase the overall speed of the system.

Section 3.4.1 discusses how scores are generated and placed onto the
processor object. For each core, this data is in a different location.
The PPE has this data immediately accessible through reference fields,
while the SPE can fetch the data via a memory operation.

Whenever a scheduling quantum expires, a command is issued for each
processor object to get the score that it holds. The processor object
then invokes a method in the thread object that saves these scores.
The processor will then clear the scores before it continues execution;
it may continue executing the same thread, or it may switch to another
thread. This process is illustrated in Figure 3.23.

Figure 3.23: Data Movement from Processors to Threads

When the scheduler receives a score, it first adds the new score to the
score currently held. An exponential averaging function is used so that
the new values are regarded as the most important, as shown.

newScore = (α ∗ newScore) + ((1− α) ∗ oldScore)

In this function, α is a number such that 0 < α < 1. A higher value
for α places more emphasis on the current result, while a lower value
places more emphasis on the previous results.

Once the score has been evaluated, a decision is made on whether the
current thread should migrate or not. This depends upon two factors;
the core the thread is currently running on, and the score relative to

46

a pre-set migration threshold. Migration thresholds can be projected
from the results of the tests in Section 3.3.5.

The migration system in Hera JVM is simple; if the thread qualifies for
migration, then it can simply invoke a method called ‘takeNextMigration()’.
Threads are only allowed to migrate at method invocations, at which
point the thread call tree migrates to the destination core. Subsequent
method calls within the outsourced method will also run on the target
processor; however, when the method returns the thread will return to
the processor upon which it was initially scheduled. Figure 3.24 shows
how method invocations are handled during a thread migration.

Figure 3.24: Thread Migration Behaviour

Unfortunately, this system faced a number of significant problems. This
flag could be set at any point, but there is no guarantee that the next
method to run in that thread would be capable of migrating. For
example, the next method could invoke the JIT compiler. Migrations
have been prevented during such vital JVM code, ensuring that JVM
methods do not migrate to other cores accidentally. However, JVM
code often calls standard Java operations, such as string operations,
which are not safe from this issue. If the migration flag is set during
such an invocation, then this method will migrate causing the JVM to
crash. This problem is illustrated in Figure 3.25

In order to combat this, migrations were prevented from happening at
certain points. These points include any JVM code that is called during
runtime, and all JVM code that runs before and after the runtime.
This was a very time-consuming task, as it was difficult to tell which
methods required the additional flags that prevented then from being
migrated.

Two additional flags were added to the system. The first was set when
the actual input code began execution and was unset when the code
completed, thus preventing JVM setup and completion code from being

47

Figure 3.25: Harmful Thread Migration

accidentally migrated. Figure 3.26 illustrates this principle.

Figure 3.26: Runtime Migration Control

The other flag took the form of a counter, which was incremented
whenever a piece of runtime JVM code was invoked. When the JVM
code completed, the counter was decremented again. While the counter
was at 0, migrations were allowed. Runtime code could be invoked
at almost any time in an unpredictable manner, so this system was
required to ensure migrations could not occur at certain points.

When a migration flag is set, it will automatically be cleared when the
prevent migrations counter is increased. However, the thread will set
another flag allowing it to remember that it planned to migrate. When
the counter reaches 0 and migrations are allowed again, the thread will
check if this flag is true. If it is true, then the thread will check if

48

its current score permits migration and that it is still in the program
runtime. If these checks fail, then it will clear the flag, resetting the
migration system to its default mode. This process is illustrated in
Figure 3.27.

Figure 3.27: JVM Runtime Migration Control

The thread scoring system and the runtime scheduler work together to
decide where each thread should be scheduled. Thread-to-core affinities
take the form of a simple value representing the volume of arithmetic
code in the system; if this is over a certain threshold, then the thread
will migrate. This prototype scheduler provides an effective base for
further experimentation.

3.5 Conclusion

In this Chapter the nature of the research to be undertaken was out-
lined. In section 3.1, the literature survey was discussed, revealing a
knowledge gap and outlining what could be done to fill this gap. In
Section 3.2.2, it was concluded that this research will be carried out
by designing a dynamic scheduler for the Cell processor. Section 3.3.5
contains an investigation into the Cell in order to fully understand its
hetergeneous properties, and Section 3.4.2 discusses how a prototype

49

scheduler was designed, implemented, and configured.

Chapter 4 will build on the results of the work carried out in this
Chapter, and details the design of an experiment that will allow the
dynamic affinity scheduler developed in section 3.4.2 to be evaluated
and compared to similar schedulers.

50

Chapter 4

Experimental Design

The aim of this project is to investigate the capabilities of dynamic
affinity scheduling techniques when applied to heterogeneous multi-core
processors. The work carried out in Section 3 has produced a working
and configured prototype dynamic affinity scheduler. This scheduler is
built into Hera JVM, originally designed with a static annotation-based
scheduler.

In this Chapter an experiment will be developed to investigate the
properties of this prototype dynamic affinity scheduler, and judge its
merits when compared with two other schedulers. Section 4.1 presents
the aims of the experiment and specifies the hypotheses, followed by
Section 4.2 where the variables in the experiment are outlined and
discussed. Section 4.3 presents the design and specifications of the
experiment, before Section 4.4 summarises and concludes this Chapter.

4.1 Experimental Aims

The aim of the experiment is to demonstrate the potential of dynamic
affinity scheduling techniques. This will be done by comparing the
prototype Dynamic Affinity Scheduler presented in Section 3.4.2 with
the two other schedulers available in Hera JVM; a Static Scheduler and
an Annotation-Based Scheduler.

These three schedulers differ in a number of ways. The dynamic and
the static scheduler require no modification of the source code, mak-
ing them the simplest for the programmer to use. However, only the
annotation-based and dynamic schedulers provide the ability to take
advantage of the Cell’s multiple cores. The static scheduler does not
provide migration abilities and therefore has minimal overheads, while
the other schedulers incur penalties for every thread migration that
occurs.

The actual merit of each scheduler depends entirely on the code it is

51

trying to schedule. If the code provides a high volume of migration
opportunities, migrating at all of them would incur heavy overheads
that would likely negate any benefit from affinity scheduling. Similarly,
if a program contains few migration points then the dynamic affinity
scheduler would not be able to respond quickly to changing affinities.

The dynamic affinity scheduler aims to identify code phases and sched-
ule based on processor affinities; if this is successful, then the phase
code would run faster. However, the overheads involved may result
in the cost of migration being greater than the benefit of migrating.
The longer each code phase is, the higher the benefit of correct affinity
scheduling.

While identifying the code phases is automatic in the dynamic affinity
scheduler, the annotation-based scheduler relies entirely on the pro-
grammer to identify both the program phases and the correct location
to place annotations; this requires a deep understanding of the pro-
gram’s runtime behaviour, the affinity properties of the processor and
the costs and benefits of each migration.

It is the differences between the three schedulers that the experiment
should explore. It is unlikely that any single scheduler would be supe-
rior in every case, therefore the experiment should be cover a number
of cases in order to evaluate each scheduler in terms of their abilities
and limitations. Based the information presented in Chapter 3, the
following hypotheses concerning the performance of each scheduler can
be formed.

H1: The dynamic affinity scheduler will be superior to the
annotation-based scheduler when creating affinity-based
schedules.

H2: The performance of the dynamic affinity and annotation-
based schedulers will improve for well-defined workloads
with clear phase boundaries.

H3: The dynamic affinity scheduler and the annotation-based
scheduler will have better multi-threaded performance than
the static scheduler.

H4: For both the dynamic affinity scheduler and the annotation-
based scheduler, the benefit of affinity scheduling will be
greater than the cost.

Exploring these hypotheses would allow for a broad investigation into
the capabilities of dynamic affinity scheduling techniques. The results
of an experiment into these properties would provide enough informa-
tion to analyse dynamic affinity scheduling techniques at a higher level.

All of the hypotheses presented here will be investigated in a similar
manner. First, a performance test will be developed that will stress all
three schedulers. The performance of each scheduler will be evaluated

52

in terms of this performance test, allowing a comparison of each sched-
ulers abilities. The details of this experiment will be explored in the
remainder of this chapter.

4.2 Variables

Prior to designing the experiment, the variables involved must be con-
sidered with respect to the desired output. In this section the different
variables present in the experiment will be introduced and discussed in
order to evaluate their potential impact on the experiment.

4.2.1 Indepedent Variable

The independent variable in the experiment is the type of scheduler
used. There are three different schedulers that will take part in the ex-
periment; the prototype dynamic affinity scheduler developed in Sec-
tion 3.4.2, the annotation-based scheduler and the static scheduler,
both of which are built into Hera JVM .

The static scheduler in Hera JVM, when faced with unannotated code,
will allow the code to continue running on the current core; assuming
no annotations are present, a given thread will complete on the same
core it was created on. Threads will not migrate between cores without
annotations, so there are no migration overheads; the overheads related
to calculating the affinities will also not be present.

The annotation-based scheduler requires hand-tuning, as location of
the annotations will have a significant impact on the results of the test.
Therefore, different configurations should be used when running the
experiment on the annotation-based scheduler. A hand-tuned schedule
should also be able to make the most effective use of the hardware.
To allow for a meaningful comparison, only configurations that will be
highly effective should be tested.

The dynamic affinity scheduler is more complex, as it has to score the
code and calculate affinities. If scoring is too complex, then the over-
heads will result in lower performance compared to the static sched-
ulers. It’s also possible that the overheads of migration may create
a significant performance drop. While different configurations can re-
sult in different levels of performance, the prototype affinity scheduler
was configured during its implementation as detailed in Section 3.4.2.
The configuration of the dynamic scheduler should remain constant
throughout the experiment.

53

4.2.2 Dependent Variable

The dependent variable in this case is the performance of the test
program. Taken as a high-level view, ‘performance’ in this respect
refers to the time taken for the test program to complete. The lower the
time taken to complete, the better the performance of the scheduler.
However, there exists the possibility of confounding variables if the
performance measurement is limited to completion time alone.

For example, the unannotated static scheduler would have no schedul-
ing overheads as it does not allow migrations. The annotation and
dynamic schedulers would be expected to reduce the time spent in cer-
tain areas of the code, however they would incur greater overheads.
This creates a confounding variable; if performance is lowered, it could
be because of a poor scheduling decision or high overheads. There is
also the chance that the cost of migration is equal to the benefit, dis-
guising the effects of affinity scheduling. This implies a need for two
separate timing metrics; one that measures the time spent running the
test code itself, and another metric that measures the total time taken
to run the test.

4.2.3 Extraneous Variables

There are a number of extraneous variables present in the system that
would be likely to have an impact on the performance of the schedulers.
The most obvious extraneous variable is the code used when testing
the system. Some test programs will be ideally suited for a particular
scheduler, and will always produce better results when scheduled by
it; for example, pure object code in a single thread would be expected
to run best on the static scheduler, as there are no overheads and the
PPE has an affinity for this workload.

There are also some JVM effects that should be considered. For ex-
ample, the JIT compiler itself would have an impact on performance
if not accounted for. The first time each method is invoked, the JIT
compiler will be activated; is this happens during a timed part of the
experiment, it would interfere with the results.

Another JVM factor that must be considered is the garbage collector.
In Java, the garbage collector is a separate thread which intermittently
blocks running threads to clear up memory space. If garbage collection
takes place during a timed section, it could significantly modify the
results of the experiment, as garbage collection is often a lengthy and
time-intensive task. These JVM variables should be controlled as much
as possible to ensure that they do not interfere with any experimental
results.

Other programs running on the Cell could also impact on the results
of the experiments. This should be controlled as much as possible, en-

54

suring that for each experiment is carried out in a similar environment.

As the dynamic affinity scheduler builds up a score over time, each
thread has an associated score. If different tests are run using the
same threads, then the scores of one test would be passed to the next,
creating a ‘learning effect’. This could impact on performance in a
number of ways, improving it in some cases and decreasing it in others.
This learning effect must be eliminated for any experiments to produce
valid results.

The dynamic scheduler must be provided with sufficient opportuni-
ties to migrate if it is to construct efficient schedules. Therefore, the
number of migration opportunities will have a significant impact on
performance; if few opportunities, it is vital that the decisions made at
those points are correct; with abundant migration points, the sched-
uler may be able to migrate often enough that migration overheads
quickly outweigh any performance gains. This variable is important
and should be controlled, allowing any relationship between the num-
ber of migration points and the performance of the dynamic scheduler
to be explored.

The number of threads is also expected to have a significant impact
on the performance of each scheduler. As the number of threads is
increased, it is predicted that both the annotation scheduler and the
dynamic affinity scheduler would quickly outperform the static sched-
uler, as they are able to distribute their workload over the other cores.
The number of threads present in the system should be controlled.

As the Cell is a heterogeneous processor, running the experiment from
different starting cores would result in performance differences. This
should be controlled, ensuring that each thread starts execution in the
same environment.

Another factor to control during testing is the actual cost of the mea-
surements themselves. As much as possible, measurements should not
interfere with the running of the test; interference such as writing re-
sults to a file during a timed area would have an impact on the results
of that test.

These variables should all be considered and controlled where possible.
Some variables, such as the number of threads, workload and migration
opportunities should be explicitly controlled during the test to provide
different testing environments for each scheduler. However, these are
not independent variables; it should be the scheduler alone that creates
any performance differences. Each part of the experiment should be
performed in similar circumstances, with each of the variables discussed
in this section well defined and controlled.

55

4.3 Experimental Design

The main observed variable is the time taken to complete the test;
yet this value alone is not sufficient for a full analysis. As described in
section 4.2, there are two factors to be measured for each scheduler; the
time spent running the test code, and the overheads associated with
each scheduler. It is important that both these values are considered
separately, and as such the experiment must be able to produce both
of these values.

Section 4.2 also outlined that the experiment should consider different
workloads, variations in migration opportunities, and the number of
test threads.

In order to test the schedulers, a benchmark program will be developed
that has been specifically designed for this experiment. This bench-
mark program will directly control a large number of the variables
discussed in section 4.2, and will produce all the information required
for an evaluation.

The most important feature of this benchmark program is the ability
to generate a number of different workloads that can be used to stress
the three schedulers. The construction of the workloads will be varied
in a number of ways, based on the two workload variables discussed
in section 4.2; the processing requirements of the workload and the
number of migration opportunities presented by the workload. Both
of these variables will be controlled in order to model a variety of
workloads, each one dynamically generated.

The first of these variables is the runtime behaviour of the workload.
Two different workloads of equal size will be developed. The first,
an arithmetic workload with an affinity for the SPE; the second, an
object-based workload with an affinity for the PPE. These workloads
have been developed based on the results of the investigation into the
Cell’s affinity properties carried out in section 3.3.5. The two workloads
can be combined in a number of ways to create program-emulating
workloads that vary in their runtime behaviour and processing core
affinities.

Given that A represents an arithmetic workload and B represents an
object-based workload, then the two workload components can be com-
bined to create 16 different workload patterns as shown below. Work-
loads will be dynamically built by iterating over each one of these
patterns. Such dynamically created workloads allows the experiment
to be run over a wide range of input, each one representing a different
set of affinity properties.

56

AAAA ABAA BAAA BBAA

AAAB ABAB BAAB BBAB

AABA ABBA BABA BBBA

AABB ABBB BABB BBBB

The second variation between the workloads concerns the number of
migration opportunities in the test code. Hera JVM is currently lim-
ited to migrating only at the start of method invocations, so large
monolithic programs will be able to migrate less often than small com-
partmentalized ones.

The experiment will account for this by extending the amount of time
spent processing each pattern, while reducing the number of iterations;
this has the effect of increasing the weight of the workload while reduc-
ing the migration opportunities it presents. The actual length of the
experiment will remain constant each time, allowing the results to be
compared. Table 4.1 shows the weights of the different workloads to
be used during the experiment.

Workload Name Weight Iterations Patterns per Test
Very Heavy 10000 1 10000

Heavy 2000 5 10000
Medium 400 25 10000

Light 200 50 10000
Very Light 100 100 10000

Table 4.1: The Weights of the Different Workloads

The benchmark program will also control a number of the other other
variables discussed in section 4.2. The effects of garbage collection
will reduced as much as possible by invoking the System.gc() method
where possible, which will notify the JVM that it should run the
garbage collector. This does not guarantee that the garbage collec-
tor will not be run during the tests, but it will help to ensure that
garbage collection occurs outside of timed areas. Unfortunately it is
no longer possible to control garbage collection once there is more than
one thread, as any other thread could call this method during a given
thread’s timed section. Therefore, enough iterations of the experiment
test should be performed to identify times that have been inflated by
the garbage collector.

The JIT compiler effects will be explicitly managed by running a warm-
up system which runs all the code on both processors prior to beginning
the test. This will cause the JIT compiler to pre-compile the benchmark
methods, ensuring that the JIT compiler will not be called during any
of the timed sections.

The learning effect will be eliminated by creating a new thread for each
part of the test. Each thread will run a test and report the results to a
static scoring system. At the end of the thread’s runtime it will create

57

the next test thread, which it will start immediately before it completes.
Once the next thread begins running, it will call System.gc() to try
and clean up the previous thread; it will run the experiment. The final
thread will call a static finalising method, which will cause the scoring
system in of the benchmark to write its results to a file. As the scores
are linked to the thread, this will eliminate any learning effects from
the experimental results. The process of submitting scores to another
part of the program at the end of the test also controls any timing
anomalies that would have occurred as a result of directly measuring
the performance of the threads.

There are few variables not directly controlled by the benchmark, and
they will be controlled during the experiment by other means. The
tests themselves will be run on the same Cell processor when the Cell
is not being used for other tasks, ensuring that external programs will
not affect the outcome of the tests.

Controlling these variables ensures a similar test environment between
experiments, and also ensures that a wide number of variables are con-
trolled during each experiment, helping to ensuring that the results are
free from confounding variables and external influences.

4.4 Conclusion

The experiment described in section 4.3 will be ideal for investigating
the hypotheses specified in section 4.1.

In the case of H1, the experiment will provide both the time spent in
the target code and the overheads of the scheduler. It is predicted that
the annotation based scheduler will have higher overheads than the
affinity scheduler; however, if it can reduce the time taken to complete
each phase, then the dynamic affinity scheduler would be superior as
it would both complete phase code faster and have smaller overheads.
Over the various workloads, if this property can be shown to exist then
it would provide evidence that supports the first hypothesis.

The second hypothesis, H2, will be investigated through directly con-
trolling the type of workload. This is directly related to the number of
migration opportunities present in the given workload. As the exper-
iment involves testing over a range of generated workloads of varying
weight, the information gathered from the experiment should provide
sufficient evidence to support any evaluation of this hypothesis.

The third hypothesis, H3, will be investigated by comparing the per-
formance of each scheduler over a range of threads. As the number
of threads increase, it is expected that the phase completion times of
the dynamic and annotated schedulers will be lower than the static
scheduler; if the overall completion times are also lower, it supports

58

the theory that the dynamic and annotation-based schedulers offer su-
perior multi-threaded performance.

The fourth hypothesis, H4, represents a core issue in this project. The
experiment will provide information on the overheads, and through
comparison with a static scheduler it will be possible to determine
if the price of affinity scheduling can be justified. Section 3.3.5 has
already shown that the performance difference between the two cores
of the Cell processor are considerable; investigating this hypothesis
will reflect upon the value of both annotation and dynamic affinity
scheduling techniques.

The results of this experiment will be presented in chapter 5, and these
results will be interpreted in Chapter 6.

59

Chapter 5

Results

In this Chapter the results of the experiment described in Chapter 4
are presented. Section 5.1 present the results of the static scheduler
experiment. Section 5.2 presents the results of two different kinds of
annotation tests, as described in Section 4.3. Section 5.3 will present
the results of the Dynamic Scheduler experiment, before Section 5.4
concludes the Chapter.

5.1 Static Scheduler Results

The static scheduler is the most basic of the three schedulers. As
such, it is expected to have the lowest overheads. However, the static
scheduler is a poor choice for any heterogeneous multi-core processor
as it will prevent programs from taking full advantage of the resources
available to them.

Three tests were carried out on the static scheduler; a workload based
test, to determine its ability to handle different workloads, presented
in Section 5.1.1; a workload weight test, to determine the effects on
the static scheduler with different phase lengths and migration points,
presented in Section 5.1.2; and a thread test, to investigate the capa-
bilities of the static scheduler when working with multi-threaded code,
presented in Section 5.1.3.

5.1.1 Static Scheduler Workload Pattern Test Results

The two workloads were designed to run with roughly equal times on
the static scheduler, regardless of their weight or pattern. However,
there remained slight differences between each combination of patterns.

Table 5.1 presents the average timing results for each combination of
patterns. The full test comprised of all permutations, but for simplicity
these results are aggregated into simple combinations here. Therefore,

60

Pattern Type Average Time (ms)
AAAA 120
AAAB 129
AABB 124
ABBB 126
BBBB 128

Table 5.1: Static Scheduler Performance by Workload Construction

entry AAAB represents all combinations that contain 75% type A code
and 25% type B code. The full results are presented in Appendix B.

Table 5.1 shows that there is very little difference between the perfor-
mance over a single thread, regardless of the workload. There is an 8
ms difference between code of type A and code of type B.

There is an almost visible trend as the weights are altered, with the
time increasing by 2 ms towards the BBBB pattern; there is one outlying
result here, which is the AAAB patterns. Upon further examination of
the expanded graphs found in section B, a spike in performance can
be seen specifically in the second pattern which is AAAB. As the JIT
compiler effects are controlled, this effect is attributed to the Hera JVM
garbage collector. As a result of this, AAAB type patterns have a high
standard deviation of 11%.

These results will form the bases upon which the other results are
compared in Chapter 6. This spike appears over all the scheduling
tests with a similar weight, and as such will not have a major impact
on any comparisons drawn from these results.

5.1.2 Static Scheduler Workload Weight Test Results

The workload based test is designed to highlight the effects of different
phase lengths. However, the overall workload will remain the same,
and as such the static scheduler is expected to produce similar times
over all the results.

Workload Total (ms) Phase (ms)
Very Light 125 123

Light 124 122
Medium 127 124

Heavy 126 124
Very Heavy 124 124

Table 5.2: Static Scheduler Completion Times for Various Workload Weights

The results of this test are presented in Table 5.2. This presents both
the total time taken to carry out the test and the time spent inside

61

each phase, averaged out over all 16 patterns described in Section 4.2.

As expected, the results demonstrate that the length of the phase has
little effect on the actual time taken to complete the given piece of code.
The standard deviation between the total time taken to complete the
test is 0.93%, while the standard deviation between phase times is
0.65%.

The graph in Figure 5.1 presents this information visually, demon-
strating that there is an insignificant difference between between each
workload.

5.1.3 Static Scheduler Multi-Threaded Test Results

The static scheduler is not capable of making migrations without the
use of annotations. In effect, the static scheduler is simply the anno-
tation scheduler presented with unannotated code. It is expected to
have significantly fewer overheads than the other schedulers, but the
drawbacks of being unable to migrate make it entirely unsuitable for a
multi-core heterogeneous processor.

As such, it is expected that each new thread will increase the average
completion time in a direct relationship with the number of threads
present. The multi-threaded experiment will consider up to 8 test
threads, each one built from the “Heavy” workload type.

Threads Total (ms) Phase (ms)
1 126 124
2 197 137
3 289 212
4 473 472
5 510 415
6 625 524
7 814 813
8 858 755

Table 5.3: Static Scheduler Thread Performance

Each thread ran a heavy workload over all 16 patterns, and reported the
average overall time and average phase time once it had completed. The
average completion time of a thread was then calculated, and organised
by the number of threads present in the test. This information is
presented in Table 5.3; as with the previous results, this is an abridged
version of the full results which can be found in Appendix C.

As was predicted, increasing the volume of threads appears to have a
direct impact on the average completion time. As each thread is forced
to share resources, each new thread imposes a significant performance
penalty. The overheads of the system remain quite low, however the

62

time taken to complete each phase rises significantly as the threads are
increased.

Figure 5.2 presents a visual comparison between the overheads and
the performance of the system, demonstrating how it varies with the
number of threads in the system. Figure 5.3 isolates the performance,
showing that performance decreases as the number of threads is in-
creased.

63

Figure 5.1: Static Scheduler Performance for Various Workload Weights

Figure 5.2: Static Scheduler Performance and Overheads over Multiple
Threads

64

Figure 5.3: Static Scheduler Performance over Multiple Threads

65

5.2 Annotated Scheduler Results

The annotated scheduler is a variant of the static scheduler, using code
annotations to make scheduling decisions. The annotations were placed
in two places when testing the annotation scheduler; in an intuitive
location likely to reduce phase time yet incurring heavy overhead costs,
and in a counter-intuitive location that aims to minimise overheads
through a knowledge of the workloads. These two annotations are
tested separately so that a broader overview of the annotation based
scheduler can be developed.

The results of both annotation tests will be presented together here;
the results of the workload based test will be presented in Section 5.2.1,
followed by the results of the workload weight test in Section 5.2.2, and
finally the results of the multi-threading test are presented in Section
5.2.3.

5.2.1 Annotation Scheduler Workload Pattern Test Results

The annotated scheduler will incur significant overheads as it migrates
at every annotation, even if the annotation is incorrect. For the pur-
poses of this experiment only useful annotations are considered. As
the intuitive model migrates very often, it is expected that it will suf-
fer from extremely high overheads when faced with workloads that
contain more type A code.

Conversely, the counter-intuitive annotation placement will reduce the
migration overheads significantly by migrating the thread at the highest
level. This is analogous to a programmer with a high understanding
of the system ignoring type B affinities, which may be a reasonable
trade-off.

Workload Intuitive Time (ms) Counter-Intuitive Time (ms)
AAAA 649 62
AAAB 505 92
AABB 412 124
ABBB 302 156
BBBB 139 188

Table 5.4: Annotated Scheduler Performance by Workload Pattern

Table 5.4 presents the results of the experiment. As expected, the intu-
itive annotations incur very heavy overheads, which outweigh the sav-
ings made through affinity scheduling. However, the counter-intuitive
scheduler saves on migrations through a knowledge of the system. All
code is run on the SPE which results in a net saving; the cost of mi-
gration and the penalty for incorrectly scheduling type B workloads is
easily accounted for by the significant savings of running type A code

66

on the SPE.

Through ignoring the affinities of type B code, counter-intuitive sched-
uler completes type AAAA patterns almost ten times faster than the
intuitive scheduler. However, the intuitive scheduler makes a small
saving in type BBBB code, completing it 26% faster. More information
about the results of this test can be found in Appendix A.

These results demonstrate that the type of workload has a significant
impact on an annotation-based scheduler; however it can also be as-
serted that the annotation-based scheduler relies heavily on a deep
understanding of the underlying system and the overheads of migra-
tion. It is likely that someone with this knowledge would annotate code
in counter-intuitive places, as shown, in order to achieve the greatest
performance. However, it is often the case that the actual runtime be-
havior of a program is hidden; it could be a dynamic program, or the
program could use library code which is transparent to the program-
mer. These factors should be taken into account when evaluating the
effectiveness of an annotation-based scheduler.

5.2.2 Annotation Scheduler Workload Weight Test Results

The results presented in Section 5.2.1 suggest that migration costs are
quite high in Hera JVM. This test will highlight this issue by varying
the number of migration points present in the test code. It is expected
that with more migrations, the overheads will quickly start to outweigh
the benefits of migration.

Intuitively Annotated
Workload Total Phase

Very Light 1050 118
Light 505 119

Medium 252 94
Heavy 121 89

Very Heavy 97 91

Counter-Intuitively Annotated
Workload Total Phase

Very Light 133 126
Light 125 121

Medium 123 118
Heavy 120 115

Very Heavy 119 115

Table 5.5: Annotated Scheduler Performance and Workload Size

Table 5.5 presents the results of this test for both annotations. The
“Very Light” workload category causes a very large number of mi-
grations to take place in the intuitively annotated test, resulting in

67

extremely poor performance. However, the time spent in each phase
does not suffer as phase code is always allocated to the best processor
regardless of overheads.

The overheads of intuitively annotated code are compared to the phase
times in Figure 5.4, which shows that good performance is only achieved
when the program is large and monolithic. When working with small
compartmentalized workloads, scheduling overheads represent 88.8% of
the total running time.

The counter-intuitive annotations have slightly longer phase times, as
they ignore some affinity properties in order to reduce the overheads
of scheduling. On average, the overheads of scheduling in this manner
represent 4% of the total running time. Figure 5.5 highlights this,
showing that the overheads of scheduling in this manner are reasonably
constant, showing a standard deviation of 0.93 ms in overhead costs.

The full results of this test can be found in Appendix B.

68

Figure 5.4: Intuitively Placed Annotations and Workload Size

Figure 5.5: Counter-Intuitively Placed Annotations and Workload Size

69

5.2.3 Annotation Scheduler Multi-Threaded Test Results

As the annotation based scheduler is able to distribute its workload,
it is to be expected that the annotation based scheduler will not incur
heavy penalties when faced with a multi-threaded workload. As in the
static scheduler test, 8 threads are tested over all of the patterns using
the “Heavy” workload.

Threads Total (ms) Phase (ms)
1 121 89
2 158 93
3 238 99
4 299 96
5 354 94
6 393 95
7 609 99
8 775 98

Table 5.6: Annotated Scheduler Performance and Overheads over Multiple
Threads with Intuitive Annotations

The results of the test on the intuitively annotated benchmark are
shown in Table 5.6. The phase time is very small, as the workload
is distributed over all of the processing cores based on the affinities
of that code. However, the scheduler retains high overheads that rise
with the number of threads in the system. Taking full advantage of the
Cell’s heterogeneous processors has resulted in very good performance
for the phase code, which suffers very little as the number of threads
increases. The overheads are compared to the phase times in Figure
5.6, while Figure 5.8 shows the overall performance trend as the number
of threads is increased.

Threads Total (ms) Phase (ms)
1 120 115
2 122 116
3 145 139
4 192 164
5 207 202
6 235 232
7 273 235
8 311 235

Table 5.7: Annotated Scheduler Performance and Overheads over Multiple
Threads with Counter-Intuitive Annotations

For the benchmark with counter-intuitive annotations, the trend is
quite different Continuing the analogy that the counter-intuitive anno-
tations have been written by a programmer with a deep knowledge of
the Cell, another factor becomes apparent when the results in Table
5.7 are considered. Initially, the phase times remain reasonably low

70

along with the overheads. However, the Cell processor available only
has 6 SPEs in working condition, implying that thread switching starts
to take place as the number of threads reaches this point. Surprisingly,
this does not manifest as a sudden performance drop, but instead as a
non-linear performance drop relative to the number of threads.

It is likely that this effect occurs because multiple threads are created
and migrated between the cores. The Element Interconnect Bus, de-
scribed in Section 3.2.1, runs at half the speed of the processing cores.
The EIB is responsible for all communication in the Cell, and it may
be responsible for the steady curve shown. With the combined effects
of increasing DMA requests, migrating new threads between cores, and
eventually managing thread switches on the cores, a saturation point
may be reached. An increase in phase times can be attributed to rising
numbers of DMA requests, while the rise in overheads that occurs at
the introduction of the fourth thread may represent the EIB beginning
the struggle with the high workload.

When these factors are considered, it becomes apparent that using an
annotation system correctly requires a great deal of knowledge concern-
ing the underlying system, and presents a serious issue when attempt-
ing to abstract the heterogeneous hardware. Figure 5.7 compares the
overheads and phase times of this test, while Figure 5.9 demonstrates
the performance trend as the number of threads in the test rises. The
full results of this experiment are included in Appendix C.

71

Figure 5.6: Annotated Scheduler Performance and Overheads over Multiple
Threads with Intuitive Annotations

Figure 5.7: Annotated Scheduler Performance and Overheads over Multiple
Threads with Counter-Intuitive Annotations

72

Figure 5.8: Annotated Scheduler Performance over Multiple Threads with
Intuitive Annotations

Figure 5.9: Annotated Scheduler Performance over Multiple Threads with
Counter-Intuitive Annotations

73

5.3 Dynamic Affinity Scheduler Results

The dynamic scheduler is the most advanced scheduler, attempting to
make scheduling decisions based on a pre-programmed knowledge of
hardware properties. of the three schedulers. It is likely to present
some overheads, but it is hoped that these overheads will be smaller
than the savings of affinity scheduling.

Again, three tests were carried out. The results of the workload pat-
tern test are presented in Section 5.3.1, followed by the results of the
workload weight test in Section 5.3.2, and finally the results of the
multi-threading test in section 5.3.3.

5.3.1 Dynamic Affinity Scheduler Workload Pattern Test Re-
sults

The dynamic affinity scheduler is expected to spend a small amount
of time ‘learning’ the affinities and then scheduling based on prior be-
havior. As the test program exhibits cyclic behaviour, the system will
learn where the current code should be scheduled after it has run for a
short amount of time. This should allow the scheduler to migrate code
only when the migration is beneficial.

Workload Average Time (ms)
AAAA 161
AAAB 148
AABB 129
ABBB 130
BBBB 132

Table 5.8: Dynamic Scheduler Performance over Various Workload Con-
structions

Table 5.8 presents the average times of the dynamic scheduler over
all workloads, organised by the construction of the workload. This
highlights some interesting points; firstly, that the dynamic scheduler
is able to recognise that type B workloads should not be migrated;
it is able to complete these workloads very quickly. It was expected
that type AAAA and AAAB workloads would be very fast in the dynamic
scheduler; however, the actual cost of migration in a single thread
actually outweighs the benefits of the migration.

The full results of this test are presented in Appendix B.

74

5.3.2 Dynamic Affinity Scheduler Workload Weight Test Re-
sults

While Section 5.3.1 demonstrates that the dynamic scheduler is capa-
ble of recognising the different workloads and adapting the scheduling
policy to take advantage of affinities, the actual benefit is tied to the
scheduling overheads. Given more opportunities to migrate, the dy-
namic scheduler is likely to incur higher initial overheads as it learns
the behaviour of the system.

Workload Total (ms) Phase (ms)
Very Light 144 121

Light 136 125
Medium 137 123

Heavy 128 120
Very Heavy 126 123

Table 5.9: Dynamic Scheduler Performance over Various Workload Weights

Table 5.9 gives the time spent in each phase and the overall time as
the workload’s weight is varied. These results suggest that the dynamic
affinity scheduler is affected very little by the weight of the workload
and the definition of the phases. This behaviour is contrary to the ex-
pected behaviour of the dynamic affinity scheduler, as it was expected
that different migration opportunities would result in significantly dif-
ferent scheduling abilities. It is also surprising that the type of work-
load has a greater impact on performance than the number of migration
opportunities.

Figure 5.10 presents this information visually, showing that the dy-
namic scheduler is not significantly affected by the number of migration
opportunities or by the length of the phase. The full results of this test
can be found in Appendix B.

5.3.3 Dynamic Affinity Scheduler Multi-Threaded Test Re-
sults

The dynamic affinity scheduler is able to distribute its workload based
on core affinities, and as such it is expected to perform well in the
multi-threaded test.

Table 5.10 presents the results of this test; as with the previous tests,
the table presents the average performance of a thread relative to the
number of threads in the system. There are some interesting points to
highlight in these results; firstly, there is a sudden jump in performance
once seven threads are reached. This can be attributed to the six SPE’s
in the Cell; when trying to schedule seven threads, the system will begin
to slow down. This can be clearly seen in both the phase times and

75

Figure 5.10: Dynamic Scheduler Performance over Various Workload
Weights

Threads Total (ms) Phase (ms)
1 126 121
2 159 121
3 170 126
4 210 124
5 223 123
6 232 126
7 300 135
8 330 132

Table 5.10: Dynamic Scheduler Performance over Multiple Threads

76

the overall times.

Another interesting point is the gradual increase in the overall time,
up until seven threads. This trend can be attributed to the increase
in EIB activity; as discussed in Section 3.2.1, the EIB runs at a much
slower speed than the cores; the programmer is responsible for making
efficient use of the EIB, as described by Kistler et.al [12]. With the
dynamic scheduler making a number of migrations, the overheads of
migrating will increase with the use of the EIB; similar behaviour was
observed in the annotated scheduler in Section 5.2.3.

These results are presented in Figure 5.11, showing how the perfor-
mance and the phase times change with the number of threads. Figure
5.12 shows the actual performance trend as the number of threads
present in the system is increased. The full results of this test can be
found in Appendix C.

5.4 Conclusion

In this Chapter, the results of the experiment described in Chapter
4 are presented. The results of this experiment will be evaluated in
the following chapter. The full results of these tests can be found in
Appendices B and C.

77

Figure 5.11: Dynamic Scheduler Performance and Overheads over Multiple
Threads

Figure 5.12: Dynamic Scheduler Performance over Multiple Threads

78

Chapter 6

Evaluation

In this chapter, an evaluation based on the results presented in Chapter
5 is presented. Sections 6.1, 6.2, 6.3 and 6.4 will evaluate the hypotheses
laid out in Section 4.1, before Section 6.5 concludes this chapter with
a summary of the main points presented here.

6.1 Evaluation of H1

H1: The dynamic affinity scheduler will be superior to the
annotation-based scheduler when creating affinity-based
schedules.

Scheduler AAAA AAAB AABB ABBB BBBB
Dynamic 158 149 127 127 129

Static 120 129 124 126 128
I-Annotated 649 505 412 302 139

C-Annotated 62 92 124 156 188

Table 6.1: Finish Times by Workload

To evaluate this hypothesis, the ability of each scheduler to adapt to dif-
ferent workloads is considered. Table 6.1 compares the finishing times
of each scheduler over different types of workload. This information is
also presented in the graph in Figure 6.1.

It is immediately obvious that the annotated scheduler, when given
intuitively annotated code, has the worst performance. While Figure
6.5 shows that this scheduler will provide the best performance in-
phase, the large overheads involved in achieving this performance make
it a wasted effort. Effectively, this means that any developer lacking an
in-depth knowledge of the Cell’s hardware would find it very difficult
to create an efficient schedule using annotations.

79

Figure 6.1: Performance of each Scheduler grouped by Workload

However, given this knowledge a counter-intuitive placement of the
annotations can result in a very well performing schedule in a single
thread. As is shown in Figure 6.5, this will provide performance that is
comparable to the static and dynamic schedulers; however, a closer look
at Table 6.1 and Figure 6.1 reveal that this technique factors affinities
for the best net gain and does not allow different workloads to migrate
for improved performance; it also relies entirely on a knowledge of the
runtime behaviour of the program, which is why it suffers from poor
performance in BBBB style workloads.

The dynamic affinity scheduler, however, is able to identify the affin-
ity properties of the running code and migrate the thread based on
its processing core affinities. This means that it is significantly faster
than the intuitively annotated scheduler in AAAA workloads, while per-
forming equally well with BBBB style workloads. This suggests that
the dynamic affinity scheduler offers better performance on unmodi-
fied code than an annotation based scheduler offers with intuitively
annotated code.

Comparing performance with the counter-intuitively annotated sched-
ule is more difficult. The counter-intuitive schedule offers the best
performance, as it reduces the number of migrations to the smallest
possibly amount. As a result, it ignores BBBB affinities and schedules
all the code to run on the SPE. As a result, it outperforms the dynamic
affinity scheduler on 40% of the given workloads, matches its perfor-
mance in AABB style workloads, and is unable to match it in the BBBB

style workloads.

The average performance difference between the counter-intuitive and
dynamic affinity schedules shows that the counter-intuitive scheduler
is slightly superior in this case, as is shown in Figure 6.1. Yet this only
considers a single thread of execution.

80

Figure 6.3 shows that the dynamic affinity and the counter-intuitive an-
notation schedules are almost evenly matched as the number of threads
increases; as with the single thread, the counter-intuitive annotated
scheduler provides slightly faster performance. However, Figure 6.2
reveals the penalties of ignoring type B affinities. Even up to eight
threads, the actual time spent in-phase is consistently low for the dy-
namic affinity scheduler.

The counter-intuitively annotated schedule, in ignoring B affinities, cre-
ates a large amount of traffic on the Element Interconnect Bus, a phe-
nomenon outlined in Section 5.2.3. The additional pressure on the EIB
means that B type workloads take much longer than expected to finish
on the SPE; in effect, their affinity to the PPE actually increases with
the number of threads.

The dynamic affinity and intuitively annotated schedules both provide
the best in-phase performance; however, the high overheads of the in-
tuitive schedule make it entirely useless.

The evidence in this case supports the hypothesis; the dynamic affinity
scheduler is superior to the annotation based scheduler in creating affin-
ity schedules. If the code is annotated intuitively enormous scheduling
penalties will render is effectively useless; however, it is the only way
to achieve the lowest in-phase performance. If the code is annotated
counter-intuitively, it relies on a deep understanding of the system. Yet
it ignores some affinity properties, and as a result suffers poor in-phase
performance.

The evidence suggests that only the dynamic affinity scheduler is able
to distribute the workload in a manner that maintains low overheads
and high in-phase performance; as such, it can be concluded that it is
better than the annotated scheduler at creating affinity-based sched-
ules, validating the hypothesis.

81

Figure 6.2: Phase Performance of each Scheduler over Multiple Threads

82

Figure 6.3: Overall Performance of each Scheduler over Multiple Threads

83

6.2 Evaluation of H2

H2: The performance of the dynamic affinity and annotation-
based schedulers will improve for well-defined workloads
with clear phase boundaries.

While it was expected that the dynamic affinity scheduler would have
an ideal ‘migration point density’, the results of the experiment do not
support this theory. Table 6.2 shows how the average completion time
changes relative to the weight of the workload; this information is also
presented visually in Figure 6.4.

Scheduler Very Light Light Medium Heavy Very Heavy
Dynamic 144 ms 136 ms 137 ms 128 ms 126 ms

Static 125 ms 125 ms 127 ms 126 ms 124 ms
I-Annotated 1051 ms 506 ms 252 121 ms 97 ms

C-Annotated 133 ms 126 ms 123 ms 120 ms 119 ms

Table 6.2: Finish Times by Workload Weight

The ‘weight’ of the workload is described in Chapter 4. The ‘heavier’
the workload, the longer the time spent executing each phase. To
ensure the results can be compared easily, the number of iterations
over the workload are reduced as the phase length is increased. The
number of migration points will decrease as the weight of the workload
increases.

It was predicted that this would have an effect on the static and the
dynamic schedulers; however, the results of the experiment strongly
suggest that this is not the case. Performance for the dynamic workload
remains consistent over all of the workloads, with the results reported
in Section 5.3.2 showing a standard deviation of only 5.3% in overall
completion time and 1.5% in phase completion time.

The annotation scheduler provides results that support this theory.
Figure 6.4 shows that the additional migrations caused by a light work-
load create enormous overheads. The only time that the intuitive
schedule is able to offer competitive performance is when scheduling
very heavy workloads with few migration opportunities.

The counter-intuitive annotated schedule is designed to reduce the over-
heads significantly by placing the migration at the highest point. As
such, this scheduler would not be affected by any changes in the work-
load weight, which is reflected in the figures presented in Table 6.2.
The standard deviation between its timings is 4.5% for overall time,
and 4% for phase time. These standard deviations are comparable to
those for the dynamic affinity scheduler.

The evidence suggests that this hypothesis is incorrect; neither the dy-
namic or the affinity schedulers demonstrate a performance difference

84

Figure 6.4: The Completion Times for each Scheduler over Various Work-
loads

when the weight of the workload and the number of migration op-
portunities is changed. While the large performance difference in the
intuitively annotated schedule appears to support the hypothesis, the
counter-intuitive scheduler demonstrates that it is the position of the
annotations, and not the construction of the workload, that is respon-
sible for the performance division.

6.3 Evaluation of H3

H3: The dynamic affinity scheduler and the annotation-based
scheduler will have better multi-threaded performance than
the static scheduler.

This hypothesis is based on the knowledge that the static scheduler
does not possess multi-threading capabilities. As such, it is expected
to fare poorly in the multi-threaded tests. Table 6.3 compares the
the results of the multi-threaded experiment. This information is also
shown in Figures 6.3 and 6.2.

These results demonstrate the the static scheduler performs worst when
faced with multiple threads. With all of the threads competing for re-
sources on the same processor, it displays an average performance that
is worse than that of the intuitively annotated scheduler. In addition,
it also has the longest in-phase times.

While the static scheduler offers excellent performance over a single
thread, this performance scales very poorly. The evidence in this
case strongly supports the hypothesis, demonstrating that the dy-
namic affinity and annotation-based schedulers offer far superior multi-

85

Overall Performance
Threads Dynamic Static Annotated [I] Annotated [C]

1 126 126 121 120
2 159 138 158 122
3 170 250 238 145
4 210 272 299 192
5 223 481 354 207
6 232 600 393 235
7 300 814 609 273
8 330 837 775 311

In-Phase Performance
Threads Dynamic Static Annotated [I] Annotated [C]

1 121 124 89 115
2 121 138 93 116
3 126 250 99 139
4 124 272 96 164
5 123 480 94 202
6 126 597 95 232
7 135 813 99 235
8 132 837 98 235

Table 6.3: Multi-Threaded Performance by Scheduler

threaded performance.

6.4 Evaluation of H4

H4: For both the dynamic affinity scheduler and the annotation-
based scheduler, the benefit of affinity scheduling will be
greater than the cost.

This hypothesis attempts to establish if dynamic affinity and anno-
tation based scheduling techniques are actually beneficial. For either
technique to have real-world applications, it would need to ensure a
net saving when compared to the alternatives.

Scheduler Avg Total (ms) Avg Phase (ms)
Dynamic 134 122

Static 125 123
Intuitively Annotated 405 102

Counter-Intuitively Annotated 124 119

Table 6.4: Average Performance and Overheads

86

Table 6.4 presents the average performance over all workload weights
and patterns for a single thread, which is also shown in Figure 6.5.
From these, it can be clearly seen that intuitively annotating code will
result in a poor schedule. While it offers the highest increase in phase
time, it comes at a high price.

However, the counter-intuitive schedule presents excellent performance
by actively reducing these overheads. The results of the experiment
suggest that correctly annotated code will offer a considerable perfor-
mance gain. While the actual overheads and savings are directly linked
to the placement of the annotations, the evidence suggests that the an-
notated scheduler can improve performance enough to cover the costs
of affinity scheduling, which supports the hypothesis.

The dynamic affinity scheduler also has high overhead costs, as it incurs
the cost of both migration and measuring affinities. However, unlike
the static and annotation schedulers it is able to adjust the schedule
based on the affinities of each thread. As discussed in Section 6.1,
this usually allows the dynamic affinity scheduler to take advantage of
affinities in a way that the other schedulers cannot.

However, Table 6.4 shows that the average completion time is higher
than that of the static scheduler. In a single thread, the static sched-
uler represents the normal performance; given that the static scheduler
outperforms it on average, it suggests that the overheads are not ac-
counted for by the performance gains.

However, this does not consider multi-threaded performance. Figure
6.3 shows that the average performance increases at a much lower rate
than that other schedulers as the number of threads is increased. Also,
Figure 6.2 shows that as the number of threads is increased the average
time taken to complete each phase does not increase significantly.

This implies that as the number of threads increases, the performance
benefit of dynamic affinity scheduling also increases. Therefore, when
considering eight threads there is a greater ‘saving’ in which to justify
the overheads. Figure 6.3 shows that the dynamic affinity and counter-
intuitively annotated schedules are almost evenly matched.

Given that the dynamic affinity scheduler offers the best in-phase per-
formance, at this point the substantial cost of affinity scheduling fits
within the savings. the counter-intuitive schedule has less overheads,
but also offers less savings.

As the number of threads is increased, both the dynamic and the
counter-intuitive annotated scheduler show the best overall performance.
The high overheads incurred by the counter-intuitive scheduler are a
result of increasing the traffic on the EIB, which also manifests in the
form of diminishing returns regarding in-phase savings.

87

The dynamic scheduler also increases the EIB traffic, but it also pro-
vides consistent in-phase performance. These facts strongly support
the hypothesis that the cost of both dynamic affinity scheduling and
annotation based scheduling can be justified by the performance in-
crease.

Figure 6.5: Average Time for each Scheduler to Complete the given Work-
load in a Single Thread

88

6.5 Conclusion

In this chapter the hypotheses outlined in Chapter 4.3 were evaluated.
From these, it was concluded that the dynamic affinity scheduler will
provide a superior affinity schedule than the annotation based sched-
uler; it was concluded that the dynamic affinity and annotation-based
scheduler would outperform the static scheduler; and it was concluded
that the dynamic affinity and annotation-based schedulers are capable
of justifying their cost through performance improvements.

It was also concluded that the workload weight and the number of
migration points does not affect the performance of either the dynamic
affinity or the annotation-based schedulers, which refutes the second
hypothesis given in Section 4.1.

This suggests that dynamic affinity scheduling techniques have consid-
erable potential when heterogeneous processors are considered. In most
cases, the dynamic affinity scheduler was able to match or outperform
the other schedulers, suggesting that a higher level of heterogeneous
abstraction can be achieved.

89

Chapter 7

Conclusion

The purpose of the research carried out here was to investigate the
properties and potential of dynamic affinity scheduling techniques when
applied to heterogeneous processor abstraction. Such techniques would
assist in the abstraction of the heterogeneous hardware, which would
make it easier to program for complex modern systems.

The literature survey carried out Chapter 2 highlighted that dynamic
affinity techniques, while previously explored, have not been considered
in terms of a highly heterogeneous system such as the Cell processor.
Previous research was limited in this field, with research that consid-
ered hardware affinities aimed at reducing power usage or the overall
completion time of the program. A knowledge gap exists when consid-
ering highly heterogeneous hardware, like the Cell processor.

An investigation was carried out into the Cell processor in Chapter
3. This involved an exploration of the Cell processor’s heterogeneous
nature and its code affinities. This research concluded that arithmetic
code would run much faster on one of the Cell’s 8 SPE cores than it
would on the large PPE core; conversely, code which relies on memory
access would run much slower on the SPE.

This information was used to build a prototype dynamic affinity sched-
uler. This scheduler was built into Hera JVM, which aims to abstract
the heterogeneous nature of the processor. Hera JVM is equipped with
a basic static scheduler that uses code annotations to schedule threads
to cores; if the dynamic affinity scheduler developed in Section 3.4.2
could be shown to be more effective than this scheduler, then it could
replace it, completing the abstraction of the heterogeneous processor.

An experiment was designed in Chapter 4.3 that would allow the pro-
totype dynamic affinity scheduler to be compared to the annotation-
based scheduler. For this experiment, the annotation-based scheduler
was represented in three ways; unannotated code was used to repre-
sent a static scheduler, and two different annotation configurations were
used to fully explore the properties of annotation-based scheduling.

90

Four hypotheses were constructed based on the information taken from
the investigation, each one designed to explore a different aspect of
each scheduler. The first hypothesis asserted that the dynamic affinity
scheduler would be able to provide more useful affinity-based schedules
than the annotation based scheduler.

The second hypothesis considered that the performance of both the
annotation-based and the dynamic scheduler would depend on the
number of migration opportunities and the length of each test phase.

The third hypothesis considered multi-threaded performance, and as-
serted that the static scheduler would not be able to provide efficient
multi-threader performance compared to any of the other schedulers.

The fourth hypothesis asserted that both the annotation-based sched-
uler and the dynamic affinity scheduler would be able to create a large
enough performance improvement to nullify the overheads of the sched-
uler itself.

An experiment was designed that was able to identify the costs and
benefits of each scheduler, providing enough data to fully explore these
hypotheses. The results of this experiment were presented in Chapter
5, and any interesting points or unusual behaviour was identified and
explored.

In Chapter 6, the hypotheses were evaluated using the results of the
experiment. The first hypothesis was concluded to be valid, as the ev-
idence supported the theory that the dynamic affinity scheduler would
be able to create superior affinity schedules.

The second hypothesis was refuted, as the evidence suggested that the
nature of the code had little impact on either the dynamic affinity or
the annotation-based scheduler. The dynamic affinity scheduler per-
formance was not relative to either the migration opportunities or the
time spent in each phase, and the annotation-based scheduler perfor-
mance was relative to the location of the annotations.

The third hypothesis was considered valid, as the evidence strongly
supported the theory that a multi-threaded workload would complete
faster when scheduled by either a dynamic affinity scheduler or an
annotation based scheduler.

The fourth hypothesis was also concluded to be valid, as both the
dynamic affinity scheduler and the annotation-based scheduler were
able reduce the phase time enough to cover the cost of scheduling.

These results are highly significant, as they demonstrate that dynamic
affinity scheduling is able to match or beat the performance of a hand-
tuned annotation based scheduler.

91

7.1 Implications

Two configurations of the annotation-based scheduler were used during
the course of this experiment; one representing the most intuitive way
to annotate the code, and another representing the code annotations
that would result in the highest possible performance for the test code.
The intuitive annotations fared very poorly in the tests; the overheads
of scheduling in this manner were so severe that code annotated in this
way would actually provide the worst general level of performance.

The alternative configuration is almost completely counter-intuitive,
and was labelled as such during the course of the research. For any
programmer to annotated code in this manner, it would require an in-
depth understanding of both the runtime properties of the code and
the Cell architecture.

The dynamic affinity scheduler easily outperformed the intuitive con-
figuration of the annotation scheduler, and managed to come very close
to the performance of the counter-intuitive scheduler in every experi-
ment. In fact, the actual in-phase times were generally lower for the
dynamic affinity scheduler than they were for the ‘best performance’
annotations.

This meant that the dynamic affinity scheduler was generally able to
offer the greatest savings for the phase code, only being held back by
the high costs of migration. The first hypothesis concluded that the
dynamic scheduler would produce better affinity schedules than the an-
notations could provide, while the third hypothesis demonstrated that
the dynamic affinity scheduler would provide efficient multi-threaded
performance. The fourth hypothesis concluded that the dynamic affin-
ity scheduler was able to increase the overall performance of the system,
to a level on-par with that of the best configuration for the annotation-
based scheduler.

The second hypothesis, while refuted, also helps to build a case in
favour of the dynamic affinity scheduler by demonstrating that these
performance gains are not closely tied to the nature of the code.

In conclusion, a dynamic affinity scheduler offers consistently high per-
formance. It also allows for the complete abstraction of the hardware
in Hera JVM, as the programmer is no longer required to annotate
their code to get the best level of performance. It has been shown that
dynamic affinity scheduling techniques have considerable potential in
heterogeneous processor abstraction.

92

7.2 Further Work

There is a lot of scope for further work and research. While it has been
shown that dynamic affinity scheduling techniques allow for a greater
degree of heterogeneous abstraction, the experiment described here is
based entirely on a single benchmark program. While this program
is designed to stress the schedulers as much as possible, it could be
expected that real-world applications would not behave in this way.
As such, further testing and research using different benchmarks such
as the SPEC JVM suite should be carried out.

This research makes no attempts to specify an implementation strategy
for a dynamic affinity scheduler. Although it has been implemented in
Hera JVM for the purpose of research, the migration costs incurred in
Hera JVM are significant.

Therefore, further research could be carried out at both the hardware
and the software level. The technique described here uses compile-time
to score the code, but hardware counters could perform this task just as
easily at runtime, and with a greater degree of accuracy. The possibility
of hardware support for dynamic affinity scheduling should be explored,
and it may even be possible to create a framework that allows different
heterogeneous processors to provide a consistent interface for software
schedulers.

Reducing the migration overheads would significantly increase the prof-
itability of dynamic affinity scheduling techniques. This would also be
an important avenue for exploration; the dynamic affinity scheduler
offered the best-value reduction in phase time during the experiment.
It is likely that these overheads can be reduced further outside of the
Hera JVM environment.

This research project has sufficiently demonstrated that dynamic affin-
ity scheduling techniques could have a wide range of applications. It
has been shown that they are capable of matching the performance
of even the most well-configured annotation-based scheduler, and that
they are a powerful technique for heterogeneous processor abstraction.
These results contribute to the heterogeneous processor and compiler
research fields, and provide scope for further work in this area.

93

Appendix A

Cell Affinity Results

This Appendix presents graphs showing the basic results of the pre-
liminary experiment described in section 3.3.5. Graphs come in pairs,
with each pair of graphs representing a particular instruction category.

The first of these graphs shows the actual finish times for each exper-
iment, while the second graph represents the performance difference
when code of this type is run on the SPE compared to the PPE.

The y-axis denotes the percentage of ’special’ instructions. At 0%, the
test sample is made up entirely of get and put field instructions. Each
iteration of the test increases the number of special codes by 1%. At
100%, the code is entirely made up of special instructions. The full
details of this experiment, along with the reasoning behind the tests
and an interpretation of these results, is given in chapter 3. An index
of the graphs is presented in table A.1.

Instruction Type Graphs
Integer A.1A.2
Long A.3A.4
Float A.5A.6

Double A.7A.8
Method A.9A.10
Field A.11A.12
New A.13A.14

Branch Perfective A.15A.16
Branch Destructive A.17A.18
Branch Alternating A.19A.20

Switch/Case A.21A.22

Table A.1: A Comparison of the Arithmetic Abilities of each Core Type.

94

Figure A.1: Integer Code Timings

Figure A.2: Integer Speed Difference

95

Figure A.3: Long Code Timings

Figure A.4: Long Speed Difference

96

Figure A.5: Float Code Timings

Figure A.6: Float Speed Difference

97

Figure A.7: Double Code Timings

Figure A.8: Double Speed Difference

98

Figure A.9: Method Code Timings

Figure A.10: Method Speed Difference

99

Figure A.11: Field Code Timings

Figure A.12: Field Speed Difference

100

Figure A.13: New Code Timings

Figure A.14: New Speed Difference

101

Figure A.15: Branch (Perfective) Code Timings

Figure A.16: Branch (Perfective) Speed Difference

102

Figure A.17: Branch (Destructive) Code Timings

Figure A.18: Branch (Destructive) Speed Difference

103

Figure A.19: Alternating Branch Code Timings

Figure A.20: Alternating Branch Speed Difference

104

Figure A.21: Case/Switch Code Timings

Figure A.22: Case/Switch Speed Difference

105

Appendix B

Full Results of Workload
Experiment

In this Appendix, the full results of the workload experiment are pre-
sented. This provides additional information to accompany the results
presented in Chapter 5. There are five tables in this section; an index
is presented in Table B.1.

Results Graphs
Very Heavy B.2

Heavy B.3
Medium B.4
Light B.5

Very Light B.6

Table B.1: Index of Workload Experiment Result Tables

106

V
er

y
H

ea
v
y

W
or

k
lo

ad
D

yn
am

ic
St

at
ic

St
at

ic
I-

A
nn

St
at

ic
C

I-
A

nn
P
at

te
rn

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

A
A

A
A

12
0

10
7

12
0

12
0

66
53

57
52

A
A

A
B

11
1

10
7

12
5

12
5

81
75

86
83

A
A

B
A

15
3

13
3

12
1

12
1

80
73

87
84

A
A

B
B

14
2

13
6

12
5

12
5

96
91

11
9

11
6

A
B

A
A

10
8

10
4

12
2

12
2

79
71

87
84

A
B

A
B

11
0

10
7

12
5

12
5

96
91

11
9

11
5

A
B

B
A

14
0

13
5

12
5

12
5

95
91

11
9

11
6

A
B

B
B

14
2

13
8

12
8

12
8

11
2

11
0

15
1

14
7

B
A

A
A

12
0

12
0

12
1

12
1

82
72

87
84

B
A

A
B

12
4

12
4

12
5

12
5

10
6

10
2

11
9

11
5

B
A

B
A

12
4

12
3

12
4

12
4

96
90

11
9

11
6

B
A

B
B

12
6

12
6

12
8

12
8

11
2

11
0

15
1

14
7

B
B

A
A

12
2

12
2

12
4

12
4

95
91

11
9

11
5

B
B

A
B

12
6

12
6

12
7

12
7

11
5

11
0

15
1

14
7

B
B

B
A

12
6

12
6

12
7

12
7

11
5

11
0

15
1

14
7

B
B

B
B

12
8

12
8

12
9

12
9

12
9

12
9

18
3

17
9

A
ve

ra
ge

12
6

12
2

12
4

12
4

97
91

11
9

11
5

St
d.

D
ev

12
.5

11
.0

2.
7

2.
7

16
.9

19
.6

32
.9

32
.7

A
vg

.
O

ve
rh

ea
ds

3.
17

%
0.

00
%

6.
19

%
3.

36
%

T
ab

le
B

.2
:

Fu
ll

R
es

ul
ts

of
th

e
V

er
y

H
ea

vy
W

or
kl

oa
d

E
xp

er
im

en
t.

107

H
ea

v
y

W
or

k
lo

ad
D

yn
am

ic
St

at
ic

St
at

ic
I-

A
nn

St
at

ic
C

I-
A

nn
P
at

te
rn

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

A
A

A
A

12
9

91
12

0
11

9
91

49
61

53
A

A
A

B
15

8
11

9
15

4
11

7
12

8
70

86
85

A
A

B
A

12
7

11
5

12
2

12
2

10
1

66
87

85
A

A
B

B
13

8
13

2
12

4
12

4
11

6
92

12
3

11
6

A
B

A
A

12
5

11
6

12
1

12
1

12
2

67
87

84
A

B
A

B
12

9
12

8
12

4
12

4
13

3
86

11
9

11
6

A
B

B
A

12
8

12
8

12
5

12
5

10
5

94
11

9
11

6
A

B
B

B
12

9
12

9
12

7
12

7
12

6
10

7
15

1
14

8
B

A
A

A
12

3
11

2
12

2
12

2
11

2
65

87
83

B
A

A
B

12
9

12
9

12
5

12
5

15
6

10
9

12
3

11
6

B
A

B
A

12
7

12
7

12
5

12
4

13
1

84
12

3
11

6
B

A
B

B
13

1
13

1
12

7
12

7
13

2
10

8
15

1
14

7
B

B
A

A
15

1
15

1
12

6
12

6
10

7
93

11
9

11
6

B
B

A
B

13
0

13
0

12
8

12
8

12
5

10
8

15
1

14
8

B
B

B
A

12
8

12
8

12
7

12
7

12
9

10
8

15
5

14
8

B
B

B
B

13
3

13
3

12
9

12
9

12
7

12
7

18
3

17
8

A
ve

ra
ge

13
2

12
4

12
6

12
4

12
1

89
12

0
11

5
St

d.
D

ev
9.

4
12

.8
7.

7
3.

3
15

.6
21

.4
32

.7
32

.5
A

vg
O

ve
rh

ea
ds

6.
06

%
1.

59
%

26
.4

5%
4.

17
%

T
ab

le
B

.3
:

Fu
ll

R
es

ul
ts

of
th

e
H

ea
vy

W
or

kl
oa

d
E

xp
er

im
en

t.

108

M
ed

iu
m

W
or

k
lo

ad
D

yn
am

ic
St

at
ic

St
at

ic
I-

A
nn

St
at

ic
C

I-
A

nn
P
at

te
rn

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

A
A

A
A

17
6

11
3

12
0

11
9

40
2

49
61

55
A

A
A

B
15

1
10

6
16

1
12

5
30

4
59

90
87

A
A

B
A

15
1

11
7

12
2

12
2

30
2

61
92

87
A

A
B

B
13

1
13

0
12

4
12

4
26

6
11

0
12

3
11

9
A

B
A

A
15

0
12

5
12

4
12

4
30

1
99

91
87

A
B

A
B

12
7

12
7

12
4

12
4

20
0

87
12

3
11

9
A

B
B

A
13

0
13

0
12

4
12

4
29

0
11

3
12

3
12

0
A

B
B

B
13

0
13

0
12

7
12

7
19

9
11

3
15

5
15

0
B

A
A

A
15

1
13

0
12

2
12

2
29

9
46

91
87

B
A

A
B

12
7

12
7

12
5

12
4

29
7

11
3

12
3

11
7

B
A

B
A

13
0

13
0

12
4

12
3

20
2

82
12

3
11

9
B

A
B

B
12

9
12

9
12

8
12

7
19

8
11

6
15

5
15

1
B

B
A

A
15

0
15

0
12

5
12

5
25

2
11

0
12

7
11

7
B

B
A

B
13

0
13

0
12

7
12

7
20

0
11

8
15

5
15

1
B

B
B

A
13

1
13

1
12

7
12

6
19

8
11

4
15

9
15

1
B

B
B

B
13

3
13

3
12

9
12

9
12

9
12

9
18

3
18

1
A

ve
ra

ge
13

9
12

7
12

7
12

4
25

2
94

12
3

11
8

St
d.

D
ev

13
.9

9.
6

9.
4

2.
4

67
.2

27
.2

32
.6

32
.7

A
vg

O
ve

rh
ea

ds
8.

63
%

2.
36

%
62

.7
0%

4.
07

%

T
ab

le
B

.4
:

Fu
ll

R
es

ul
ts

of
th

e
M

ed
iu

m
W

or
kl

oa
d

E
xp

er
im

en
t.

109

L
ig

h
t

W
or

k
lo

ad
D

yn
am

ic
St

at
ic

St
at

ic
I-

A
nn

St
at

ic
C

I-
A

nn
P
at

te
rn

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

A
A

A
A

18
5

11
9

11
9

11
8

80
2

93
62

59
A

A
A

B
15

9
12

6
15

5
12

2
60

3
11

2
94

90
A

A
B

A
15

9
12

3
12

0
11

9
59

8
98

95
91

A
A

B
B

12
8

12
7

12
2

12
2

40
1

95
12

7
12

1
A

B
A

A
16

8
13

3
12

0
12

0
60

2
92

95
90

A
B

A
B

12
8

12
8

12
2

12
2

40
0

14
0

12
3

12
1

A
B

B
A

12
7

12
7

12
2

12
2

39
9

93
12

7
12

1
A

B
B

B
13

1
13

1
12

5
12

4
20

1
12

8
15

5
15

3
B

A
A

A
15

5
12

0
12

0
11

9
60

1
12

1
95

90
B

A
A

B
12

7
12

7
12

2
12

2
40

0
14

7
12

7
11

9
B

A
B

A
12

8
12

8
12

2
12

2
40

2
14

0
12

7
12

3
B

A
B

B
13

2
13

2
12

5
12

5
17

01
12

9
15

5
15

3
B

B
A

A
12

7
12

7
12

3
12

3
40

1
13

4
12

7
11

7
B

B
A

B
13

0
13

0
12

5
12

5
21

2
11

8
15

9
15

4
B

B
B

A
13

0
13

0
12

5
12

5
21

0
11

7
15

6
15

2
B

B
B

B
13

6
13

6
12

7
12

7
15

5
15

5
19

1
18

5
A

ve
ra

ge
14

0
12

7
12

4
12

2
50

5
11

9
12

5
12

1
St

d.
D

ev
18

.3
4.

5
8.

4
2.

5
36

6.
0

20
.8

32
.6

32
.5

A
vg

O
ve

rh
ea

ds
9.

29
%

1.
61

%
76

.4
4%

3.
20

%

T
ab

le
B

.5
:

Fu
ll

R
es

ul
ts

of
th

e
L
ig

ht
W

or
kl

oa
d

E
xp

er
im

en
t.

110

V
er

y
L
ig

h
t

W
or

k
lo

ad
D

yn
am

ic
St

at
ic

St
at

ic
I-

A
nn

St
at

ic
C

I-
A

nn
P
at

te
rn

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

T
ot

al
P

ha
se

A
A

A
A

19
4

12
1

11
9

11
8

18
86

17
7

69
65

A
A

A
B

17
7

12
4

15
9

12
1

14
02

10
5

10
2

93
A

A
B

A
17

7
12

5
12

0
12

0
14

19
10

3
99

97
A

A
B

B
12

6
12

6
12

2
12

2
94

0
14

4
13

1
12

6
A

B
A

A
17

0
12

5
12

1
12

1
13

83
10

3
99

96
A

B
A

B
12

7
12

7
12

2
12

2
24

35
31

13
1

12
7

A
B

B
A

12
6

12
6

12
3

12
3

95
0

14
7

13
5

12
5

A
B

B
B

12
9

12
9

12
5

12
5

52
4

10
1

16
3

15
8

B
A

A
A

17
0

12
2

12
1

12
1

14
94

12
8

10
3

95
B

A
A

B
12

6
12

5
12

3
12

3
91

9
15

7
13

5
12

6
B

A
B

A
12

6
12

6
12

3
12

3
90

7
74

13
1

12
8

B
A

B
B

12
8

12
7

12
5

12
5

46
4

10
0

16
7

15
8

B
B

A
A

12
7

12
6

12
4

12
4

96
6

16
9

13
1

12
6

B
B

A
B

12
8

12
8

12
6

12
5

47
1

10
2

16
7

15
8

B
B

B
A

12
9

12
7

12
5

12
4

49
9

10
0

16
7

16
0

B
B

B
B

13
2

13
2

12
8

12
8

15
3

15
3

19
9

18
6

A
ve

ra
ge

14
3

12
6

12
5

12
2

10
50

11
8

13
3

12
6

St
d.

D
ev

ia
ti

on
24

.5
2.

6
9.

3
2.

4
59

5.
3

38
.1

33
.7

32
.0

A
vg

O
ve

rh
ea

ds
11

.8
9%

2.
40

%
88

.7
6%

5.
26

%

T
ab

le
B

.6
:

Fu
ll

R
es

ul
ts

of
th

e
V

er
y

L
ig

ht
W

or
kl

oa
d

E
xp

er
im

en
t.

111

Appendix C

Full Results of Thread
Experiment

In this Appendix, the full results of the thread experiment are pre-
sented. This provides additional information to accompany the results
presented in Chapter 5. This information is presented in four tables,
one for each workload; an index is presented in Table C.1.

Results Graphs
Dynamic Scheduler C.2

Static Scheduler C.3
Annotated Scheduler (Intuitive) C.4

Annotated Scheduler (Unintuitive) C.5

Table C.1: Index of Thread Test Tables

112

T
hr

ea
d

1
T

hr
ea

d
2

T
hr

ea
d

3
T

hr
ea

d
4

T
hr

ea
d

5
T

hr
ea

d
6

T
hr

ea
d

7
T

hr
ea

d
8

T
hr

ea
ds

T
P

T
P

T
P

T
P

T
P

T
P

T
P

T
P

1
12

6
12

1
2

17
0

12
1

14
8

12
0

3
17

0
12

3
16

6
12

9
17

3
12

6
4

19
5

12
8

20
2

12
3

19
6

12
2

24
7

12
3

5
22

1
12

2
24

2
12

5
21

3
12

4
21

6
12

1
22

3
12

4
6

26
5

12
6

20
1

12
7

25
9

12
4

21
7

13
3

23
4

12
4

21
3

12
4

7
28

5
13

0
27

7
13

8
29

2
13

1
38

2
13

4
30

1
14

1
30

2
13

5
26

1
13

9
8

35
9

13
6

31
8

12
7

33
6

13
4

34
5

12
5

42
9

13
6

31
6

12
7

25
8

13
9

27
7

13
2

T
ab

le
C

.2
:

Fu
ll

D
yn

am
ic

T
hr

ea
d

T
es

t
R

es
ul

ts

113

T
hr

ea
d

1
T

hr
ea

d
2

T
hr

ea
d

3
T

hr
ea

d
4

T
hr

ea
d

5
T

hr
ea

d
6

T
hr

ea
d

7
T

hr
ea

d
8

T
hr

ea
ds

T
P

T
P

T
P

T
P

T
P

T
P

T
P

T
P

1
12

6
12

4
2

13
6

13
6

14
0

13
9

3
25

0
25

0
24

9
24

9
4

27
7

27
7

26
7

26
7

5
48

6
48

6
47

8
47

8
47

9
47

7
48

2
47

9
6

60
4

60
3

59
8

59
5

60
2

59
9

59
5

59
2

60
2

59
4

7
81

4
81

4
82

0
82

0
81

4
81

0
81

1
81

1
80

9
80

9
81

9
81

9
80

9
80

9
8

84
7

84
7

83
8

83
8

85
0

85
0

82
4

82
4

83
6

83
6

82
7

82
7

83
5

83
5

T
ab

le
C

.3
:

Fu
ll

R
es

ul
ts

of
th

e
H

ea
vy

W
or

kl
oa

d
E

xp
er

im
en

t.

114

T
hr

ea
d

1
T

hr
ea

d
2

T
hr

ea
d

3
T

hr
ea

d
4

T
hr

ea
d

5
T

hr
ea

d
6

T
hr

ea
d

7
T

hr
ea

d
8

T
hr

ea
ds

T
P

T
P

T
P

T
P

T
P

T
P

T
P

T
P

1
12

1
89

2
15

3
94

16
2

92
3

22
6

99
23

8
98

25
1

99
4

28
1

94
29

5
95

30
1

99
32

0
96

5
33

2
95

34
3

95
35

6
94

36
5

93
37

4
95

6
37

0
94

39
6

95
39

0
95

39
8

97
.6

40
2

94
40

0
94

7
49

6
10

0
61

2
99

62
1

10
0

62
3

10
2

63
1

98
63

8
10

0
64

5
95

8
81

6
96

75
7

10
0

76
7

10
0

77
5

98
78

3
96

79
1

97
70

4
98

80
8

10
0

T
ab

le
C

.4
:

Fu
ll

R
es

ul
ts

of
th

e
M

ed
iu

m
W

or
kl

oa
d

E
xp

er
im

en
t.

115

T
hr

ea
d

1
T

hr
ea

d
2

T
hr

ea
d

3
T

hr
ea

d
4

T
hr

ea
d

5
T

hr
ea

d
6

T
hr

ea
d

7
T

hr
ea

d
8

T
hr

ea
ds

T
P

T
P

T
P

T
P

T
P

T
P

T
P

T
P

1
12

0
11

5
2

12
1

11
6

12
2

11
6

3
14

5
13

9
14

6
13

9
14

5
13

9
4

26
4

16
5

16
7

16
2

16
7

16
4

16
8

16
4

5
20

5
20

1
20

6
20

0
20

6
20

1
20

6
20

1
21

0
20

6
6

24
5

24
2

23
3

23
0

23
3

23
0

23
4

23
1

23
3

23
0

23
4

23
1

7
24

9
23

0
26

5
23

5
26

6
23

6
27

4
23

9
28

5
23

8
29

3
24

0
27

6
22

4
8

29
7

23
6

30
7

23
7

29
7

24
0

32
2

23
7

32
3

23
5

31
8

23
9

31
2

22
5

31
4

23
2

T
ab

le
C

.5
:

Fu
ll

R
es

ul
ts

of
th

e
L
ig

ht
W

or
kl

oa
d

E
xp

er
im

en
t.

116

Bibliography

[1] Bala, V., Duesterwald, E., and Banerjia, S. Dynamo: a
transparent dynamic optimization system. SIGPLAN Not. 35, 5
(2000), 1–12.

[2] Becchi, M., and Crowley, P. Dynamic thread assignment
on heterogeneous multiprocessor architectures. In CF ’06: Pro-
ceedings of the 3rd conference on Computing frontiers (New York,
NY, USA, 2006), ACM, pp. 29–40.

[3] Bellens, P., Perez, J. M., Badia, R. M., and Labarta,
J. Cellss: a programming model for the cell be architecture. In
SC ’06: Proceedings of the 2006 ACM/IEEE conference on Super-
computing (New York, NY, USA, 2006), ACM, p. 86.

[4] Blagojevic, F., Nikolopoulos, D. S., Stamatakis, A.,
and Antonopoulos, C. D. Dynamic multigrain paralleliza-
tion on the cell broadband engine. In PPoPP ’07: Proceedings
of the 12th ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming (New York, NY, USA, 2007), ACM,
pp. 90–100.

[5] Blagojevic, F., Nikolopoulos, D. S., Stamatakis, A.,
Antonopoulos, C. D., and Curtis-Maury, M. Runtime
scheduling of dynamic parallelism on accelerator-based multi-core
systems. Parallel Comput. 33, 10-11 (2007), 700–719.

[6] Burke, M. G., Choi, J.-D., Fink, S., Grove, D., Hind, M.,
Sarkar, V., Serrano, M. J., Sreedhar, V. C., Srinivasan,
H., and Whaley, J. The jalapeno dynamic optimizing compiler
for java. In JAVA ’99: Proceedings of the ACM 1999 conference
on Java Grande (New York, NY, USA, 1999), ACM, pp. 129–141.

[7] Dhodapkar, A. S., and Smith, J. E. Comparing program
phase detection techniques. In MICRO 36: Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchi-
tecture (Washington, DC, USA, 2003), IEEE Computer Society,
p. 217.

[8] Duesterwald, E., and Bala, V. Software profiling for hot
path prediction: less is more. SIGPLAN Not. 35, 11 (2000), 202–
211.

117

[9] Duesterwald, E., Cascaval, C., and Dwarkadas, S. Char-
acterizing and predicting program behavior and its variability. In
PACT ’03: Proceedings of the 12th International Conference on
Parallel Architectures and Compilation Techniques (Washington,
DC, USA, Sept.-1 Oct. 2003), IEEE Computer Society, pp. 220–
231.

[10] Flachs, B., Asano, S., Dhong, S., Hofstee, H., Ger-
vais, G., Kim, R., Le, T., Liu, P., Leenstra, J., Liberty,
J., Michael, B., Oh, H.-J., Mueller, S., Takahashi, O.,
Hatakeyama, A., Watanabe, Y., Yano, N., Brokenshire,
D., Peyravian, M., To, V., and Iwata, E. The microarchi-
tecture of the synergistic processor for a cell processor. Solid-State
Circuits, IEEE Journal of 41, 1 (Jan. 2006), 63–70.

[11] Kahle, J. A., Day, M. N., Hofstee, H. P., Johns, C. R.,
Maeurer, T. R., and Shippy, D. Introduction to the cell
multiprocessor. IBM J. Res. Dev. 49, 4/5 (2005), 589–604.

[12] Kistler, M., Perrone, M., and Petrini, F. Cell multipro-
cessor communication network: Built for speed. Micro, IEEE 26,
3 (May-June 2006), 10–23.

[13] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan,
P., and Tullsen, D. M. Single-isa heterogeneous multi-core
architectures: The potential for processor power reduction. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Washington, DC, USA,
2003), IEEE Computer Society, p. 81.

[14] Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi,
N. P., and Farkas, K. I. Single-isa heterogeneous multi-core
architectures for multithreaded workload performance. In ISCA
’04: Proceedings of the 31st annual international symposium on
Computer architecture (Washington, DC, USA, 2004), IEEE Com-
puter Society, p. 64.

[15] Li, T., Baumberger, D., Koufaty, D. A., and Hahn, S.
Efficient operating system scheduling for performance-asymmetric
multi-core architectures. In SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing (New York, NY, USA,
2007), ACM, pp. 1–11.

[16] McIlroy, R., and Sventek, J. Hera-jvm: Abstracting proces-
sor heterogeneity behind a virtual machine. In HotOS ’09: 12th
Workshop on Hot Topics in Operating Systems (2009).

[17] Perez, J. P., Bellens, P., Badia, R. M., and Labarta,
J. Cellss: making it easier to program the cell broadband engine
processor. IBM J. Res. Dev. 51, 5 (2007), 593–604.

[18] Sherwood, T., Perelman, E., and Calder, B. Basic block
distribution analysis to find periodic behavior and simulation

118

points in applications. In PACT ’01: Proceedings of the 2001
International Conference on Parallel Architectures and Compila-
tion Techniques (Washington, DC, USA, 2001), IEEE Computer
Society, pp. 3–14.

[19] Sherwood, T., Perelman, E., Hamerly, G., and Calder,
B. Automatically characterizing large scale program behavior.
In ASPLOS-X: Proceedings of the 10th international conference
on Architectural support for programming languages and operating
systems (New York, NY, USA, 2002), ACM, pp. 45–57.

[20] Sherwood, T., Sair, S., and Calder, B. Phase tracking and
prediction. In ISCA ’03: Proceedings of the 30th annual interna-
tional symposium on Computer architecture (New York, NY, USA,
2003), ACM, pp. 336–349.

[21] Sondag, T., Krishnamurthy, V., and Rajan, H. Predic-
tive thread-to-core assignment on a heterogeneous multi-core pro-
cessor. In PLOS ’07: Proceedings of the 4th workshop on Pro-
gramming languages and operating systems (New York, NY, USA,
2007), ACM, pp. 1–5.

[22] Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands,
P., and Yelick, K. The potential of the cell processor for scien-
tific computing. In CF ’06: Proceedings of the 3rd conference on
Computing frontiers (New York, NY, USA, 2006), ACM, pp. 9–20.

119

